
 

Advances in Reliability, Safety and Security, Part 6  -Mut (eds.)  
Association, Gdynia, ISBN 978-83-68136-18-0 (printed), ISBN 978-83-68136-05-0 (electronic)

 
 

 

Deep Neural Network Based Software Reliability Growth 
Model For Fault Prediction And Severity Assessment 

Shikha Dwivedi, Neeraj Kumar Goyal 
SCSQR, IIT Kharagpur, West Bengal, India 

 

Abstract 

Software reliability is a critical aspect of modern software development, and predicting faults is helpful in testing resource 
allocation and achieving reliability targets for software release. This paper introduces a novel Deep Neural Network-based 
Software Reliability Growth Model (DNN-based SRGM) that not only forecasts detected and corrected faults but also predict 
the fault severity. The proposed model utilizes a Bi-directional GRU (BiGRU) architecture to capture the fault detection process 
(FCP), fault correction process (FCP) and the severity of corrected faults (minor, major, and critical). The model is validated 
using two real datasets showcasing superior performance compared to existing models, as demonstrated through results across 
six evaluation criteria on both the datasets. The model is also compared with existing parametric and non-parametric models, 
demonstrating predictive accuracy, and the ability to address challenges related to fault correction and severity considerations. 
Results, particularly for severity prediction, are presented and evaluated against actual faults using error metrics. The model 
contributes to improved software reliability by providing software development teams with more accurate and informative 
insights into testing outcomes for prioritizing resources and addressing critical issues proactively. 
 
Keywords: software reliability, ANN, fault detection, fault correction, severity 

1. Introduction 

The relentless pace of technological innovation presents an exciting paradox. While new advancements emerge 
at breakneck speed, the underlying software must remain reliable to underpin this progress. In this rapidly evolving 
landscape, software reliability becomes more critical aspect. The consequences can be catastrophic, highlighting 
the vital need for robust and dependable software. 

To address this growing concern, researchers have developed various software reliability growth models 
(SRGMs) (Dhaka & Nijhawan, 2022; Pradhan et al., 2022; Singhal et al., 2023; Yang et al., 2016). These models 
attempt to predict and improve software reliability by analyzing collected data on faults. Traditionally, parameter 
models based on assumptions like Poisson processes or Bayes processes have dominated the field (Huang et al., 
2022). However, these models often struggle with inflexibility and their pre-defined assumptions may not always 
hold true in complex real-world scenarios, leading to inaccurate predictions. Additionally, the reliance on specific 
estimation methods introduces further limitations, rendering the results susceptible to variations. Seeking to 
overcome these limitations, researchers explored non-parameter models like neural networks (NNs) (Bisi & Goyal, 
2016; Pandey & Goyal, 2010; Karunanithi et al., 1991). These models represent a significant shift, as they learn 
from data without relying on pre-defined assumptions. This allows them to adapt to diverse software scenarios and 
capture intricate relationships that might be missed by parameter models. However, they faced their own 
challenges, including overfitting and complex parameter tuning, which hampered their effectiveness. 

The recent surge in deep neural networks (DNNs) presents a promising new path for overcoming these 
limitations. Deep neural networks (DNNs), with their multi-layered architecture, exhibit superior capabilities in 
learning complex patterns and hidden features within data. This presents a unique opportunity to address the 
limitations of existing models and achieve more accurate and generalizable software reliability predictions. 
However, even current DNN-based SRGMs (C. Li et al., 2022; Wang & Zhang, 2018) have limitations. They often 

ESREL 2024  
Monograph Book Series 



 

neglect key factors like fault correction, severity and the influence of external factors on software reliability. To 
address these limitations, this research introduces a pioneering DNN-based SRGM that harnesses the capabilities 
of deep learning while explicitly incorporating fault correction and severity into the prediction process. Notably, 
the model utilizes Bidirectional Gated Recurrent Units (BiGRUs) to enhance its understanding of temporal 
dependencies in fault correction processes. By categorizing faults based on their impact, the model provides a 
multi-level severity assessment, improving its ability to differentiate between critical and non-critical issues. This 
integration empowers software developers to prioritize their efforts effectively, considering the actual impact of 
faults on system performance and user experience. To validate the effectiveness of our model, we utilize real-
world datasets and employ six evaluation criteria, including Mean Squared Error (MSE), bias, variation, Akaike 
Information Criterion (AIC), and Adjusted R2. Through rigorous validation using existing parametric and non-
parametric model, our DNN-based SRGM showcases superior performance, demonstrating its potential to advance 
non-parametric models by integrating fault correction mechanisms and severity assessment into their predictive 
frameworks. 

The remaining paper includes the DNN based SRGM considering fault correction and severity in Section 2. 
Next, proposed methodology has been discussed in Section 3, followed by numerical example in Section 4 to 
validate the model and at last, the work has been concluded in Section 5. 

2. DNN based SRGM considering fault correction process and severity 

We propose a deep learning model based on Bidirectional Gated Recurrent Units (Bi-GRUs) to predict 
faults. This architecture effectively captures the complex relationships between fault detection, correction, 
severity, and their evolution across testing time. 

2.1. Fault detection and correction process 

The fault removal process in software involves an iterative process of detection, correction, and retesting.  
Timely identification and rectification of faults minimize their impact on system functionality and reliability. 
Traditional models may struggle to capture the intricate dependencies between successive fault correction cycles. 
In the context of traditional Software Reliability Growth Models (SRGMs), fault detection and correction are 
typically predicted using parametric approaches (Hsu et al., 2011; Peng et al., 2018; Pradhan et al., 2022), where 
mathematical models attempt to fit historical fault data. However, these models exhibit drawbacks such as 
assumption and an inability to adapt to evolving software environments. The proposed model integrates these 
challenges by leveraging historical data, enabling the model to learn patterns and relationships between fault 
detection, correction, and severity. The DNN predicts future detected and corrected faults along with their severity, 
crucial for resource allocation and reliability estimation. Bidirectional Gated Recurrent Units (Bi-GRUs) operates 
in both forward and backward directions simultaneously, excel in capturing temporal dependencies within fault 
correction processes, enhancing predictions. GRUs' selective information update and retention enable pattern 
learning, adapting to variations over time. Furthermore, Bi-GRUs adeptly handle the dynamic nature of fault 
correction processes, accommodating variable-length sequences by processing them bidirectionally. 

2.2. Fault severity 

Traditionally, SRGMs primarily focus on the number of faults detected, neglecting the crucial aspect of fault 
severity. This subsection delves into the incorporation of Fault Severity considerations within the DNN-based 
SRGM. In the proposed model, faults are systematically categorized based on their impact on the system. This 
categorization distinguishes faults into three levels: minor, major, and critical. Each category represents a different 
degree of severity, based on the potential impact on system functionality and user experience. Minor faults cause 
minimal disruption, while major ones affect functionality significantly. Critical faults pose serious risks and 
demand immediate attention. The model is trained to categorize faults based on their impact, providing a multi-
level severity assessment (St). St denotes the severity of corrected faults at time t, representing a 3-dimensional 
vector (n1t, n2t, n3t), where:  

n1t: number of minor faults corrected in time t 
n2t: number of major faults corrected in time t 
n3t: number of critical faults corrected in time t 

By considering severity levels, the DNN-based SRGM enhances its capacity to distinguish between critical and 
non-critical issues, empowering software developers to prioritize their efforts effectively. It also mitigates risks 
and provides a realistic assessment of software reliability. 



 

2.3. Problem definition 

 Variables Dt, Ct, St represents the cumulative faults detected, corrected, and their severity at testing time 
t. 

 Fault removal process Rt = [Dt, Ct, St] integrates Fault Detection Process (FDP), Fault Correction Process 
(FCP), and fault severity for each period t. 

 In each testing period t, historical data {R1, R2 t} is collected in the dataset t. 
 Develop a stepwise prediction model to estimate Rt+1= [Dt+1, Ct+1, St+1] at the end of time t using historical 

dataset {R1, R2 t}. 
 Sliding window approach is used for neural network training and prediction, generating Rt+1 from 

historical data {R k+1, R k+ t}, where k is the window size. 
 The sliding window data, e.g., {R1, R2, R3}, is updated over time, allowing predictions based on the most 

recent historical data. 
 Choice of k depends on the total number of periods, with shorter testing time favoring smaller k and 

longer testing time using a larger k for accurate neural network predictions. 

3. Proposed methodology 

3.1. Model architecture 

3.1.1. Input Layer: 
The input layer takes as input the historical software testing data Rt = [Dt, Ct, St] for each testing period t. The 

input layer receives the testing data within the sliding window of size k. This data will be a tensor of shape (k, 3), 
where k represents the window size and 3 represents the three features: Dt (cumulative detected faults), Ct 
(cumulative corrected faults), and St (severity). 

3.1.2. Bi-GRU Layers: 
 Two stacked Bi-GRU layers are employed to process the sequences. Each layer comprises both forward and 

backward GRUs that analyze the information flow in both directions, enabling the model to capture temporal 
dependencies and context within the sequence.  

3.1.3. Output Layer:  
The output layer for Rt+1 would predict for the next testing period, including: Cumulative number of faults 

detected (Dt+1) and faults categorized by severity (St+1), representing the expected distribution of faults (n1t+1, n2t+1, 
n3t+1), that sum to the total number of expected corrected faults (Ct) in the next testing period.  

3.1.4. Data Normalization 
The collected testing dataset requires normalization before being fed into the neural network due to unevenly 

distributed values in the range of failure data. To mitigate this, Logarithmic encoding, as proposed by (Bisi and 
Goyal, 2016), is employed for this purpose. It scales all features within a specific range, typically 0 to 1, ensuring 
dimensional consistency and facilitating better learning by the network. This method transforms the input data (Rt) 
using the following formula: 

 (1) 

Here, is the encoding parameter, x is input value and X* is encoded value. 
a crucial role in scaling the data effectively. Its value is determined by considering maximum input value  
and maximum value of the encoded input . 

  (2) 

The experiments done by (Bisi and Goyal, 2016) shows that choosing  within the range of 0.85 to 0.96 for 
the logarithmic encoding leads to consistently lower Mean Absolute Percentage Error (MAPE) across diverse 
datasets. This indicates that scaling the data within this particular range allows the neural network to learn more 

, we ensure that the normalized 
data falls within the desired range while preserving valuable information about the original data distribution.  



 

3.2. Network training and validation 

To validate the efficacy of the DNN-based SRGM, rigorous training and validation processes are undertaken. 
We divide the pre-processed dataset into two parts: training set and validation set. The training set, representing 
the set of the data, used to teach the model the underlying patterns and relationships. The validation set, typically 
smaller, serves as an independent benchmark to assess the model's generalizability and prevent overfitting. The 
training phase involves presenting the neural network with historical testing data sequences, represented by sliding 
windows, and corresponding target values (e.g., Detected faults and future corrected faults categorized by 
severity). The network uses an Adam optimizer to adjust its internal parameters, gradually minimizing a mean 
squared error loss function. This process iteratively refines the network's ability to map input data patterns to the 
desired outputs. Training data is divided into smaller batches, and the network updates its parameters after 
processing each batch. The entire training dataset is passed through the network multiple times. Each epoch allows 
the network to learn more complex relationships within the data. The training process minimizes the loss function 
by adjusting the network weights, optimizing the model's ability to map past testing data to accurate predictions 
for the next period.  

3.3. Prediction 

Once our model has been trained and validated, we prepare testing data, ensuring its format aligns with the 
trained model's requirements like normalization. We pass the prepared data through the trained model, triggering 
its internal computations to generate predictions. The model outputs predictions for the next testing period, 
including:  

 Cumulative Number of Faults Detected (Dt+1): This value helps assess the effectiveness of testing efforts 
and identify potential areas for improvement. 

 Cumulative Number of Corrected Faults Categorized by Severity (St+1): By predicting the distribution 
of minor, major, and critical faults, we gain valuable insights into the potential impact of upcoming issues 
and can prioritize resources accordingly. 

4.    Numerical Example 

4.1. Data collection 

We have utilized two project datasets containing historical software testing data for model training and 
evaluation, including: 

 Testing time (t) 
 Cumulative number of faults detected (Dt) 
 Cumulative number of faults corrected (Ct) 
 Number of faults categorized by severity (n1, n2, n3 for minor, major, and critical respectively) 

The First dataset originates from the Tomcat Maven product (https://issues.apache.org/jira/), as outlined in the 
Table 7 of appendix A. This dataset encompasses 70 weeks of software testing, revealing a total of 260 detected 
faults and 232 corrected faults. The severity is classified into categories such as minor, major, and critical faults. 
The second dataset is sourced from Apache Age (https://bz.apache.org/bugzilla/), spanning 105 weeks of testing 
with severity classifications denoted as minor, major, and high. This dataset records a total of 556 detected faults, 
of which 534 have been corrected. Since our model requires a consistent severity classification scheme (minor, 
major, and critical), we consider "high" faults from this dataset as equivalent to "critical" faults. The detailed 
information for this dataset is provided in Table 8 of Appendix A. 

4.2. Model implementation 

1. Divide the dataset into training (80%) and testing (20%) sets. 
2. Preprocess the data, including logarithmic encoding for input features. 
3. Train the Bi-GRU model with defined hyperparameters on the training set using MSE loss functions. 
4. Monitor validation performance metrics (MSE, MAE) during training to avoid overfitting. 
5. Use the trained model to predict Dt+1, Ct+1 and St+1 for each time period in the testing set. 
6. Compare the predicted values with the actual values in the validation set. 
7. Calculate relevant metrics like MSE, Bias Variation etc. for both Dt+1 and Ct+1 predictions, reflecting 

overall prediction accuracy. 



 

4.3. Model Evaluation and Comparison: 

The proposed DNN-based SRGM is evaluated against existing parametric and non-parametric models. This 
section presents a comparative analysis, highlighting the advantages of the neural network model in terms of 
prediction accuracy, adaptability, and its ability to address the specific challenges posed by fault correction and 
severity considerations.  

4.3.1. Evaluation Criteria: 
To assess the effectiveness of the proposed model compared to existing approaches, we employ six different error 
criteria: 

 Mean Squared Error (MSE): Measures the average squared difference between predicted and actual 
values. Lower MSE indicates better prediction accuracy. 

 Bias: Evaluates the systematic tendency of the model to under- or overestimate the actual values. Ideally, 
a model should exhibit minimal bias. 

 Variance: Assesses the spread of the predictions around the average. Lower variance signifies higher 
consistency in the model's predictions. 

 Akaike Information Criterion (AIC): A measure of model complexity and goodness-of-fit. Lower AIC 
scores indicate better models, balancing accuracy with complexity. 

 Adjusted R-squared: An adjusted version of the R-squared statistic that accounts for the number of model 
parameters. Values closer to 1 indicate a better fit between the model and the data. 

4.3.2. Comparative Models: 
We compare our DNN-based SRGM with four existing models: 

 Xiao Model (Xiao et al., 2020) and Hu Model (Hu et al., 2007): These are non-parametric models utilizing 
neural networks for predicting detected and corrected faults. While similar to our approach in using neural 
networks, they have not addressed severity classification. 

 Dhaka Model (Dhaka and Nijhawan, 2022) and Li Model (Q. Li and Pham, 2017): These are statistical 
software reliability models designed for fault correction but not incorporated the added complexity of 
severity classification like proposed model.  

Therefore, the comparison with these models will be limited to predicting detected and corrected faults (excluding 
severity) to ensure a fair comparison. 

4.4. Performance analysis 

4.4.1. Fault detection and Correction of the Datasets 
This section analyses the performance of the proposed Deep Neural Network (DNN)-based Software Reliability 

Growth Model (SRGM) and compares it to existing models from the literature. 
Evaluation Setup: Both datasets are pre-processed by dividing into sequences of length 5 (k = 5) and using 
Logarithmic encoding with an encoding parameter of 0.95 is applied for normalization. The model training 
employed 70% of the pre-processed data for each dataset. The core architecture utilized two Bi-directional GRU 
(BiGRU) layers, one with 64 units and the other with 32 units. Both layers used ReLU activation functions for 
efficient learning. To optimize the training process, the Adam optimizer was employed for 50 epochs and a batch 
size of 18 for Dataset 1, and 100 epochs with a batch size of 20 for Dataset 2. Mean squared error (MSE) served 
as the loss function, and early stopping was implemented to prevent overfitting. 
Comparison with Existing Models: The proposed model is compared to existing models from the literature on the 
remaining 30% of the testing data for both datasets. We ensure a fair comparison by attempting to find the best 
hyperparameter settings for the existing models that minimize their errors. 
Results: The proposed model outperforms existing models across all six evaluation criteria (MSE, bias, variance, 
AIC, Adjusted R-squared) for both datasets as outlined in Table 1 and Table 3. The predicted detected and 
corrected faults at the end of testing time is listed in Table 2 and 4. The predicted faults from the testing data are 
plotted against the actual values, demonstrating a better prediction compared to the existing models in Fig. 1 and 
Fig. 2. While the existing models require a higher number of training epochs to achieve convergence, they still 
exhibit higher loss values compared to the proposed model, even after hyperparameter tuning. 



 

a

 

b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Predicted faults of Dataset 1. 

Table 1. Model comparison of Dataset 1. 

Metric Proposed 
Model 

Xiao 
Model 

Hu 
Model 

Dhaka 
Model 

Li 
Model 

Proposed 
Model 

Xiao 
Model 

Hu 
Model 

Dhaka 
Model 

Li 
Model 

MSE 13.176 34.588 59.471 12.910 130.371 49.763 314.471 149.765 55.297 535.420 

Adjusted R-squared 1.000 1.000 1.000 0.999 0.994 0.999 0.998 1.000 0.996 0.959 

Bias -2.353 -4.941 -6.412 -0.177 -1.033 4.824 15.059 10.941 1.885 -6.280 

Variation 2.849 3.288 4.417 3.621 11.474 5.423 9.653 5.651 7.258 22.472 

AIC 80.260 85.607 90.646 304.167 433.587 90.839 116.446 93.388 385.633 512.674 

Table 2. End point prediction of faults. 

Models Actual Proposed Model Xiao Model Hu Model Dhaka Model Li Model 

Detected Faults 265 267 271 280 256 232 

Corrected Faults 232 229 215 203 223 217 

       

a b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Predicted faults of Dataset 2. 



 

Table 3. Model Comparison of Dataset 2. 

Metric Proposed 
Model 

Xiao 
Model 

Hu 
Model 

Dhaka 
Model Li Model Proposed 

Model 
Xiao 
Model 

Hu 
Model 

Dhaka 
Model 

Li 
Model 

MSE 4.148 39.333 38.407 90.557 159.452 4.852 128.889 269.185 111.071 95.147 
Adjusted R-squared 1.000 1.000 1.000 0.999 0.999 1.000 1.000 1.000 0.999 0.999 
Bias 0.296 -4.222 -5.444 -0.226 -1.343 -0.556 6.370 12.741 -1.275 -0.516 
Variation 2.053 4.726 3.017 9.567 12.627 2.172 9.576 10.534 10.521 9.796 
AIC 96.888 157.243 128.731 655.603 705.592 72.393 196.225 198.678 673.776 659.059 

Table 4. End point fault prediction of Dataset 2. 

Models Actual Proposed Model Xiao Model Hu Model Dhaka Model Li Model 

Detected Faults 556 558 575 578 557 533 

Corrected Faults 526 523 508 499 518 513 

4.4.2. Severity Prediction 
In addition to predicting the overall number of detected and corrected faults, our proposed Deep Neural Network 

(DNN)-based Software Reliability Growth Model (SRGM) uniquely incorporates the prediction of fault severity. 
The model classifies corrected faults into minor, major, and critical categories. To the best of our knowledge, this 
is the first application of an Artificial Neural Network (ANN) approach to fault severity prediction. Traditional 
parametric severity models often rely on unrealistic assumptions, such as instantaneous fault correction, and 
involve numerous parameters, leading to potential overfitting. In contrast, our non-parametric DNN-based model 
effectively addresses these limitations. We evaluated the model's performance on the remaining 30% of the testing 
data for both datasets. Results, presented in a Table 5, demonstrate that the predicted severity distribution closely 
aligns with the actual severity distribution of corrected faults, with plots (Fig. 3) visually demonstrating the model's 
accuracy compared to actual values. We evaluated the predicted results using error metrics discussed in Table 5, 
showcasing that our proposed model predicts fault severity with less error. 
 

a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Severity based fault prediction of dataset 1(a) and Dataset 2(b). 

Table 5. Error Metrics for severity prediction. 

Error 
Dataset 1 Dataset 2 

Minor Major Critical Minor Major Critical 
MSE 9.8235 25.705 14.235 3.222 22.629 3.2222 
Adjusted R-squared 0.998 0.997 0.990 0.999 0.998 0.999 
Bias 1.117 -9.823 -4.588 -0.925 -1.370 0.111 
Variation 3.0183 3.7456 4.9631 1.5671 4.6422 1.8257 
AIC 88.527 74.463 67.495 64.066 57.586 50.213 

 



 

Table 6. Step-wise fault prediction for dataset 1 and 2. 
Ti

m
e 

A
ct

ua
l M

in
or

 F
au

lts
 

Pr
ed

ic
te

d 
M

in
or

 
Fa

ul
ts 

A
ct

ua
l M

aj
or

 F
au

lts
 

Pr
ed

ic
te

d 
M

aj
or

 
Fa

ul
ts 

A
ct

ua
l C

rit
ic

al
 

Fa
ul

ts 

Pr
ed

ic
te

d 
Cr

iti
ca

l 
Fa

ul
ts 

To
ta

l C
or

re
ct

ed
 

Fa
ul

ts 

Pr
ed

ic
te

d 
Co

rre
ct

ed
 

Fa
ul

ts 

Ti
m

e 

A
ct

ua
l M

in
or

 F
au

lts
 

Pr
ed

ic
te

d 
M

in
or

 
Fa

ul
ts 

A
ct

ua
l M

aj
or

 F
au

lts
 

Pr
ed

ic
te

d 
M

aj
or

 
Fa

ul
ts 

A
ct

ua
l C

rit
ic

al
 

Fa
ul

ts 

Pr
ed

ic
te

d 
Cr

iti
ca

l 
Fa

ul
ts 

To
ta

l C
or

re
ct

ed
 

Fa
ul

ts 

Pr
ed

ic
te

d 
Co

rre
ct

ed
 

Fa
ul

ts 

52 57 60 35 32 36 35 128 127 72 195 191 86 91 88 86 369 368 
53 59 61 37 34 36 36 132 131 73 197 195 87 92 89 88 373 375 
54 60 63 37 36 38 36 135 135 74 199 198 89 94 89 90 377 382 
55 60 63 37 36 38 36 135 135 75 201 199 90 94 89 90 380 383 
56 62 64 39 37 38 37 139 138 76 201 199 90 94 89 90 380 383 
57 65 68 44 38 39 38 148 144 77 201 199 90 94 89 90 380 383 
58 67 72 49 39 41 40 157 151 78 203 201 92 95 89 91 384 387 
59 72 76 52 41 42 41 166 158 79 206 205 94 97 91 93 391 395 
60 75 79 54 50 44 42 173 171 80 210 209 97 99 92 95 399 403 
61 78 81 54 52 44 42 176 175 81 213 211 99 100 92 96 404 407 
62 78 81 54 52 44 42 176 175 82 218 216 103 103 94 97 415 416 
63 81 82 54 54 44 43 179 179 83 218 216 103 103 94 97 415 416 
64 85 84 57 54 46 44 188 182 84 218 216 103 103 94 97 415 416 
65 87 86 60 56 48 49 195 191 85 220 218 103 104 96 98 419 420 
66 94 88 62 58 54 53 210 199 86 224 222 105 106 100 100 429 428 
67 102 99 62 59 56 55 220 213 87 228 226 107 108 102 101 437 435 
68 106 104 62 60 58 56 226 220 88 231 229 110 109 102 103 443 441 
69 106 107 63 62 58 57 227 226 89 234 232 112 111 102 104 448 447 
70 109 108 63 63 60 58 232 229 90 236 233 112 112 104 105 452 450 
         91 236 233 112 112 104 105 452 450 
         92 236 235 114 113 107 106 457 454 
         93 241 241 115 115 109 107 465 463 
         94 243 242 117 116 109 108 469 466 
         95 243 243 117 116 109 108 469 467 
         96 243 243 119 116 109 108 471 467 
         97 243 244 119 217 109 108 471 569 
         98 243 244 119 217 110 109 472 570 
         99 247 246 121 118 110 110 478 474 
         100 249 249 125 121 112 111 486 481 
         101 252 253 128 123 114 113 494 489 
         102 255 257 131 126 117 115 503 498 
         103 257 259 133 127 117 116 507 502 
         104 257 260 133 127 117 116 507 503 
         105 260 261 136 129 117 117 513 507 
         106 265 267 137 131 120 119 522 517 
         107 271 270 141 135 122 121 534 526 
 
The extensive evaluation on two datasets demonstrates that the proposed DNN-based SRGM offers a significant 
improvement over existing models. Its ability to leverage BiGRU layers, effective hyperparameter selection, and 
early stopping mechanism contribute to its superior performance in accurately predicting software testing 
outcomes, including both detected and corrected faults, while also considering fault severity. This ultimately 
leads to more reliable and informative guidance for software development teams. 

5. Conclusion 

This paper presented a DNN-based SRGM for predicting software testing outcomes. The key advantage of our 
proposed model lies in its ability to effectively handle both fault detection and correction along with severity 
considerations. While other models lack the ability to address these crucial aspects of software testing data. The 
proposed model stands out by predicting the severity (minor, major, critical) of corrected faults using an DNN 
approach, which is novel in the current literature. This capability provides valuable insights for prioritizing 
resources and addressing critical issues proactively. Through extensive evaluation and comparison with existing 
parametric and non-parametric models, the proposed model consistently performs well across six evaluation 
criteria (MSE, bias, variance, AIC, Adjusted R-squared) for both datasets, showcasing its superior ability to capture 
complex relationships within the data. Our non-parametric model overcomes the limitations of existing parametric 
models, such as unrealistic assumptions and overfitting caused by a large number of parameters. As software 
reliability remains a critical aspect in the ever-evolving technology landscape, our DNN-based SRGM stands as a 
valuable tool for decision-makers, offering insights into testing efficacy, fault correction, and severity impact. 



 

In future work, we aim to further refine and extend our model, explore additional datasets, and delve deeper 
into the optimization of hyperparameters for even more accurate predictions. Overall, the proposed DNN-based 
SRGM signifies a promising advancement in software reliability modeling, combining the strengths of neural 
network architectures with a holistic consideration of fault dynamics and severity predictions.     

 
Appendix A 

Table 7. Dataset 1- Tomcat Maven. 

Ti
m

e 

N
o 

of
 

D
et

ec
te

d 
fa

ul
ts 

Cu
m

ul
at

iv
e 

D
et

ec
te

d 
fa

ul
t 

N
o 

of
 

Co
rre

ct
ed

 
fa

ul
ts 

Cu
m

ul
at

iv
e 

Co
rre

ct
ed

 
fa

ul
ts 

M
in

or
 

M
aj

or
 

Cr
iti

ca
l 

Ti
m

e 

N
o 

of
 

D
et

ec
te

d 
fa

ul
ts 

Cu
m

ul
at

iv
e 

D
et

ec
te

d 
fa

ul
t 

N
o 

of
 

Co
rre

ct
ed

 
fa

ul
ts 

Cu
m

ul
at

iv
e 

Co
rre

ct
ed

 
fa

ul
ts 

M
in

or
 

M
aj

or
 

Cr
iti

ca
l 

1 1 1 0 0 0 0 0 36 3 98 3 74 2 1 0 
2 3 4 0 0 0 0 0 37 8 106 4 78 3 1 0 
3 8 12 0 0 0 0 0 38 4 110 4 82 4 0 0 
4 9 21 2 2 1 1 0 39 3 113 5 87 0 2 3 
5 4 25 4 6 2 1 1 40 4 117 5 92 4 0 1 
6 0 25 0 6 0 0 0 41 1 118 0 92 0 0 0 
7 2 27 0 6 0 0 0 42 6 124 3 95 2 1 0 
8 5 32 3 9 1 1 1 43 7 131 6 101 3 3 0 
9 4 36 3 12 2 0 1 44 2 133 1 102 1 0 0 
10 1 37 1 13 0 0 1 45 9 142 5 107 1 3 1 
11 3 40 2 15 1 0 1 46 4 146 4 111 1 2 1 
12 3 43 2 17 0 1 1 47 2 148 2 113 2 0 0 
13 0 43 0 17 0 0 0 48 3 151 0 113 0 0 0 
14 3 46 0 17 0 0 0 49 3 154 1 114 0 0 1 
15 5 51 3 20 0 1 2 50 6 160 5 119 1 3 1 
16 3 54 5 25 1 2 2 51 7 167 6 125 2 2 2 
17 3 57 2 27 2 0 0 52 4 171 3 128 1 1 1 
18 3 60 3 30 0 2 1 53 3 174 4 132 2 2 0 
19 5 65 5 35 1 2 2 54 3 177 3 135 1 0 2 
20 0 65 0 35 0 0 0 55 0 177 0 135 0 0 0 
21 1 66 0 35 0 0 0 56 3 180 4 139 2 2 0 
22 4 70 3 38 2 1 0 57 8 188 9 148 3 5 1 
23 1 71 2 40 0 0 2 58 9 197 9 157 2 5 2 
24 2 73 3 43 2 1 0 59 5 202 9 166 5 3 1 
25 5 78 4 47 2 0 2 60 7 209 7 173 3 2 2 
26 2 80 3 50 0 0 3 61 2 211 3 176 3 0 0 
27 1 81 0 50 0 0 0 62 4 215 0 176 0 0 0 
28 0 81 0 50 0 0 0 63 4 219 3 179 3 0 0 
29 2 83 3 53 2 1 0 64 7 226 9 188 4 3 2 
30 3 86 6 59 2 2 2 65 6 232 7 195 2 3 2 
31 2 88 5 64 3 0 2 66 9 241 15 210 7 2 6 
32 6 94 5 69 4 0 1 67 8 249 10 220 8 0 2 
33 1 95 2 71 2 0 0 68 5 254 6 226 4 0 2 
34 0 95 0 71 0 0 0 69 2 256 1 227 0 1 0 
35 0 95 0 71 0 0 0 70 4 260 5 232 3 0 2 

Table 8. Dataset 2- Apache Age. 

Ti
m

e 

N
o 

of
 D

et
ec

te
d 

fa
ul

ts 

Cu
m

ul
at

iv
e 

D
et

ec
te

d 
fa

ul
t 

N
o 

of
 C

or
re

ct
ed

 
fa

ul
ts 

Cu
m

ul
at

iv
e 

Co
rre

ct
ed

 fa
ul

ts 

M
in

or
 

M
aj

or
 

Cr
iti

ca
l 

Ti
m

e 

N
o 

of
 D

et
ec

te
d 

fa
ul

ts 

Cu
m

ul
at

iv
e 

D
et

ec
te

d 
fa

ul
t 

N
o 

of
 C

or
re

ct
ed

 
fa

ul
ts 

Cu
m

ul
at

iv
e 

Co
rre

ct
ed

 fa
ul

ts 

M
in

or
 

M
aj

or
 

Cr
iti

ca
l 

1 4 4 0 0 0 0 0 55 0 312 0 268 0 0 0 
2 16 20 4 4 2 0 2 56 1 313 4 272 2 2 0 
3 5 25 1 5 0 1 0 57 8 321 5 277 3 0 2 
4 3 28 3 8 2 1 0 58 7 328 5 282 4 0 1 
5 4 32 4 12 0 1 3 59 10 338 7 289 5 2 0 
6 1 33 1 13 1 0 0 60 15 353 12 301 6 4 2 
7 5 38 6 19 3 3 0 61 1 354 3 304 3 0 0 
8 3 41 2 21 2 0 0 62 0 354 0 304 0 0 0 
9 8 49 5 26 2 1 2 63 1 355 6 310 6 0 0 
10 8 57 8 34 3 2 3 64 3 358 7 317 2 3 2 
11 12 69 7 41 4 1 2 65 11 369 9 326 8 0 1 
12 5 74 5 46 2 0 3 66 7 376 8 334 5 2 1 
13 3 77 1 47 1 0 0 67 9 385 7 341 2 2 3 
14 6 83 5 52 2 0 3 68 0 385 0 341  0 0 
15 9 92 9 61 5 2 2 69 5 390 7 348 2 3 2 
16 13 105 12 73 7 3 2 70 4 394 3 351 3 0 0 
17 9 114 8 81 6 2 0 71 7 401 11 362 6 2 3 
18 5 119 5 86 0 2 3 72 11 412 7 369 3 1 3 
19 7 126 6 92 4 2 0 73 15 427 4 373 2 1 1 



 

20 1 127 0 92 0 0 0 74 11 438 4 377 2 2 0 
21 1 128 1 93 0 0 1 75 2 440 3 380 2 1 0 
22 14 142 15 108 8 3 4 76 0 440 0 380 0 0 0 
23 4 146 7 115 4 3 0 77 0 440 0 380 0 0 0 
24 9 155 9 124 5 2 2 78 3 443 4 384 2 2 0 
25 12 167 11 135 4 3 4 79 12 455 7 391 3 2 2 
26 10 177 4 139 4 0 0 80 5 460 8 399 4 3 1 
27 0 177 0 139 0 0 0 81 4 464 5 404 3 2 0 
28 4 181 6 145 6 0 0 82 3 467 11 415 5 4 2 
29 9 190 11 156 5 2 4 83 0 467 0 415 0 0 0 
30 14 204 12 168 6 3 3 84 0 467 0 415 0 0 0 
31 8 212 8 176 3 3 2 85 2 469 4 419 2 0 2 
32 6 218 7 183 7 0 0 86 8 477 10 429 4 2 4 
33 3 221 3 186 0 2 1 87 6 483 8 437 4 2 2 
34 0 221 0 186 0 0 0 88 6 489 6 443 3 3 0 
35 5 226 7 193 4 0 3 89 4 493 5 448 3 2 0 
36 9 235 13 206 6 3 4 90 3 496 4 452 2 0 2 
37 6 241 9 215 4 2 3 91 0 496 0 452 0 0 0 
38 9 250 3 218 2 1 0 92 3 499 5 457 0 2 3 
39 3 253 3 221 0 2 1 93 9 508 10 467 5 3 2 
40 0 253 0 221 0 0 0 94 2 510 2 469 2 0 0 
41 2 255 1 222 0 1 0 95 0 510 0 469 0 0 0 
42 0 255 0 222 0 0 0 96 1 511 2 471 0 2 0 
43 2 257 3 225 0 3 0 97 0 511 0 471 0 0 0 
44 3 260 3 228 0 2 1 98 0 511 0 471 0 0 0 
45 8 268 6 234 4 2 0 99 6 517 6 477 4 2 0 
46 6 274 3 237 2 0 1 100 6 523 9 486 2 4 3 
47 10 284 5 242 1 2 2 101 5 528 8 494 3 3 2 
48 0 284 0 242 0 0 0 102 8 536 9 503 3 3 3 
49 1 285 3 245 3 0 0 103 1 537 4 507 2 2 0 
50 5 290 4 249 2 2 0 104 0 537 0 507 0 0 0 
51 3 293 6 255 3 1 2 105 1 538 6 513 3 3 0 
52 5 298 6 261 2 2 2 106 12 550 9 522 5 1 3 
53 5 303 3 264 1 0 2 107 6 556 12 534 6 4 2 
54 9 312 4 268 3 0 1         

References 

Bisi, M., Goyal, N. K. 2016. Software development efforts prediction using artificial neural network. IET Software, 10(3), 63 71. 
https://doi.org/10.1049/IET-SEN.2015.0061 

Dhaka, V., Nijhawan, N. 2022. Effect of change in environment on reliability growth modeling integrating fault reduction factor and change 
point: a general approach. Annals of Operations Research. https://doi.org/10.1007/s10479-022-05084-6 

Hsu, C. J., Huang, C. Y., Chang, J. R. 2011. Enhancing software reliability modeling and prediction through the introduction of time-variable 
fault reduction factor. Applied Mathematical Modelling, 35(1), 506 521. https://doi.org/10.1016/J.APM.2010.07.017 

Hu, Q. P., Xie, M., Ng, S. H., Levitin, G. 2007. Robust recurrent neural network modeling for software fault detection and correction 
prediction. Reliability Engineering & System Safety, 92(3), 332 340. https://doi.org/10.1016/J.RESS.2006.04.007 

Huang, Y. S., Chiu, K. C., Chen, W. M. 2022. A software reliability growth model for imperfect debugging. Journal of Systems and 
Software, 188, 111267. https://doi.org/10.1016/j.jss.2022.111267 

Karunanithi, N., Malaiya, Y. K., Whitley, D. 1991. Prediction of software reliability using neural networks. Proceedings - International 
Symposium on Software Reliability Engineering, ISSRE, 124 130. https://doi.org/10.1109/ISSRE.1991.145366 

Li, C., Zheng, J., Okamura, H., Dohi, T. 2022. Software Reliability Prediction through Encoder-Decoder Recurrent Neural Networks. 
International Journal of Mathematical, Engineering and Management Sciences, 7(3), 325 340. 
https://doi.org/10.33889/IJMEMS.2022.7.3.022 

Li, Q., Pham, H. 2017. NHPP software reliability model considering the uncertainty of operating environments with imperfect debugging 
and testing coverage. Applied Mathematical Modelling, 51, 68 85. https://doi.org/10.1016/j.apm.2017.06.034 

Pandey, A. K., Goyal, N. K. 2010. Fault Prediction Model by Fuzzy Profile Development of Reliability Relevant Software Metrics. 
International Journal of Computer Applications, 11(6), 34 41. https://doi.org/10.5120/1584-2124 

Peng, R., Li, Y. F., Liu, Y. 2018. TEF dependent software FDP and FCP models. SpringerBriefs in Computer Science, 15 32. 
https://doi.org/10.1007/978-981-13-1162-8_3/TABLES/1 

Pradhan, V., Kumar, A., Dhar, J. 2022. Modelling software reliability growth through generalized inflection S-shaped fault reduction factor 
and optimal release time. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 236(1), 18
36. https://doi.org/10.1177/1748006X211033713/ASSET/IMAGES/LARGE/10.1177_1748006X211033713-FIG5.JPEG 

Singhal, S., Kapur, P. K., Kumar, V., Panwar, S. 2023. Stochastic debugging based reliability growth models for Open Source Software 
project. Annals of Operations Research, 1 39. https://doi.org/10.1007/S10479-023-05240-6/TABLES/9 

Wang, J., Zhang, C. 2018. Software reliability prediction using a deep learning model based on the RNN encoder decoder. Reliability 
Engineering and System Safety, 170, 73 82. https://doi.org/10.1016/J.RESS.2017.10.019 

Xiao, H., Cao, M., Peng, R. 2020. Artificial neural network based software fault detection and correction prediction models considering 
testing effort. Applied Soft Computing, 94, 106491. https://doi.org/10.1016/J.ASOC.2020.106491 

Yang, J., Liu, Y., Xie, M., Zhao, M. 2016. Modeling and analysis of reliability of multi-release open source software incorporating both fault 
detection and correction processes. Journal of Systems and Software, 115, 102 110. https://doi.org/10.1016/j.jss.2016.01.025 


