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Abstract 

Due to e.g. technical difficulties, complicated processes and missing personnel, single wagonload freight is a complex 
transportation system. One major problem are long and unreliable shipping times as these are influenced by many different 
aspects. In this paper, a model is proposed that forecasts the reliability of shipment relations in a single wagon network. This 
can also improve the estimation of the effects of changes in the network structure. The model maps the essential processes of 
railway operations onto a graph structure. By validating different model variants, some aspects could be identified as less 
important and other aspects as major influencing factors for the forecast of reliability. 
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1. Introduction 

This paper presents a forecasting model that can predict the long-term reliability of shipment relations in single 
wagonload transportation. On the one hand, this is a forecasting task that depends on many factors, and on the 
other hand, it is a very relevant problem for increasing the attractiveness of sustainable rail freight transport. 

At the beginning of the paper, the introduction describes how the German DB Cargo's single wagonload 
network is organized. Some terms are defined that are important for the following structure of the forecast model. 
Chapter 2 defines different variants of a model with their input and output variables and the assumed basic 
interdependencies. The forecasting problem is solved analytically with an algorithm using a graph-theoretical 
representation of these interdependencies. 

As it is not clear at this point whether the forecasted shipment times adequately reflect reality and thus whether 
the model assumptions made are tenable, the models are validated in the following Chapter 3. The validation is 
done on a subset of selected transport relations. Two validation approaches are used. In the correlated inspection 
approach, individual shipment times are determined for each shipment, whereby correlations are implicitly 
considered. This method is therefore suitable for making statements about the relevance of the assumed 
interdependencies. In the second validation approach, the models are applied with aggregated input variables, 
which makes it possible to assess the influence of correlations. 

1.1. Motivation 

In the context of climate change, it is desirable to use rail for as much freight transport as possible in order to 
reduce CO2 emissions. Due to the smallest possible consignment unit (one freight wagon), single wagonload 
transport is in particular competition with truck transport compared to other forms of rail freight transport (Stuhr 
et al., 2023). In order to achieve greater climate protection in transport, the German government is pursuing the 
goal of increasing the share of rail freight transport in the modal split to 25% by 2030 (BMDV, 2021). Reliable 
single wagonload services can therefore make a significant contribution to achieve this modal shift. 
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At the same time, however, shipment times in single wagonload transport are subject to comparatively large 
fluctuations. Due to the complexity of the system, even small deviations in available capacity or travel time of 
trains can have a major impact on shipment transit times. Good forecasting models for the distribution of shipment 
times can help to understand these relationships better. As a result, the reliability aspect can be considered more 
precisely in network and timetable planning, which ultimately also makes the shipment times that actually result 
during operation more stable. 

1.2. The Single-Wagon-Load Network of DB Cargo 

Single wagonload traffic is characterized in particular by the fact that there is a fixed network through which a 
wagon or a group of wagons can be transported from any connected freight transport station via several trains and 
shunting facilities to any other connected station (Stuhr et al., 2023). In this network, the vertices represent so-
called marshalling yards, which are connected via edges on which one or more scheduled trains run. 

DB Cargo AG is a subsidiary of Deutsche Bahn and operates the largest single wagon network in Germany. 
The data sets used for validation in this paper originate from this network. The marshalling yards in Germany are 
divided into three groups depending on their size and importance, giving the network a hierarchical structure. 
(Stuhr et al., 2023) 

The basic framework for service and network planning is the timetable, consisting of a set of timetable trains. 
A shipment is considered to be a transport order from one freight transport station to another. A shipment can 
consist of one or more wagons. The transport of a shipment is realized by an alternating sequence of train runs and 
changeovers in the marshalling yards. The sequence of marshalling yards at which changeovers take place is called 
the shipment route. 

A train can consist of several blocks of wagons. In analogy to the departure and arrival time of a train, a block 
has a collection end, up to which wagons can be added to the block in the departure marshalling yard, and a 
resolution end, up to which a block is broken up at the destination marshalling yard. In contrast to departure and 
arrival times, this planning layer includes in particular the times for train break-up, shunting operations and train 
formation in the marshalling yards. 

The reliability examined in this paper always refers to the long-term view of one fixed shipment route. In this 
case, long-term means that no statement is to be made about the arrival of a single shipment in a real-time situation 
and on a specific calendar day, but rather that a long-term distribution of shipment times can be specified.  

1.3. Related Work 

In (Marinov et al., 2012) it is outlined that rail operations planning is an active area of research and many 
decision support models have already been developed in collaboration between research and the rail industry. 
However, it is also emphasized that there is a need to adapt these models and goals to changing requirements of 
transport customers, such as smaller volumes and higher reliability. 

For example, with the aim of avoiding capacity-related congestion in the single wagonload network, a 
mathematical optimization model was developed in (Krauth and Haalboom, 2022) to increase the understanding 
of the effects of rerouting and thus improve short-term rerouting decisions. In (Bruckmann et al., 2014), a model 
was developed to enable more efficient network planning. For this purpose, the agent-based mobility simulation 
MATSim (cf. Horni et al., 2016) was adapted to the operation of single wagonload traffic. One major change that 
has been implemented in European single wagonload transport is the XRAIL network, in which several railroad 
companies have joined forces. In addition to improved interoperability, this enhanced capacity planning also has 
a positive impact on transparency and reliability for customers . The trains to be used 
for a shipment are booked in advance, which means that the marshalling yards no longer primarily work according 
to the FIFO principle (Stuhr et al., 2023). 

In (Minbashi et al., 2021), a method was developed to classify the trains at a large marshalling yard according 
to the delay or earliness of their departure time. Decision trees and random forests were trained accordingly, so 
that a forecast is possible that increases the reliability of single wagonload traffic. In (Preis et al., 2018) the focus 
is also on the marshalling yards by applying an optimization model to the internal processes with the aim of 
improving the efficiency of the entire single wagonload network 

However, among all these models, the forecast of the reliability of long-term shipment times considering the 
entire processes in a single wagonload network is still a gap that shall be addressed in this paper. 



 

2. The Proposed Forecasting Model 

To be able to make a forecast of the shipment time, the reality of the transportation system is represented in an 
abstracted, simplified model. The model definition in this chapter indicates what these abstractions consist of and 
which input and output variables the forecast model has. A graph structure is then created that builds on and 
represents the essential relationships of the model. Finally, the forecasted distribution of shipment transit times 
can be determined on the basis of this graph. 

2.1. Model Definition 

The timetable of all trains in the single wagonload network is taken as a fixed external condition. However, 
days of service are only specified on a weekday basis and not in relation to a specific calendar day. A representative 
week is taken as the timetable, i.e. special trains or timetable changes due to public holidays are not considered. 

The forecast also always refers to a specific shipment route, which is defined by a start, a destination and an 
ordered sequence of changeover locations in between. The model basically assumes that a shipment cannot use a 
connection that has a different sequence of changeovers, which also rarely occurs in reality. This does not refer to 
the route of the trains in the geographical track network, but to the train connections between changeover points. 
It is also assumed for simplicity's sake that there are no trains with direct connections with which a wagon could 
skip a changeover in the route. 

Other constraints that must be met are the capacity limits of the trains. For physical reasons, each train has a 
maximum length and a maximum mass, neither of which may be exceeded. 

The model is based on the hypothesis that the shipment time in the real single wagonload network is 
significantly influenced by the following three interdependencies. If the next departing train at a changeover point 
does not have enough free capacity in terms of mass or length, the shipment cannot be allocated to this train and 
must remain at the changeover point until the next train in this direction is scheduled. The second aspect is train 
cancellations, which have the same effect. The third relevant interdependency is that a planned changeover does 
not work due to arrival delays or early departures because the changeover time gets too short. In reality, a planned 
changeover might not work even with punctual trains due to internal processes in the marshalling yard. However, 
this and similar factors are not considered in this model because many input variables would be necessary for 
which there is insufficient data. 

Let the number of changeovers of the considered shipment route be n. The timetable defines a set of trains on 
each connecting section between two changeover points as a fixed framework condition. These sets are called 

 where i is the index of the changeover points of departure. The set of all trains is .  
 

 

Fig. 1. Example of a schematic timetable for a shipment route with two changeovers. 



 

The interdependencies assumed above, which are to be represented by the model, result in various necessary 
input variables that exist for each timetable train in the model ( ): For the necessity of sufficient free train 
capacity, there are two stochastic distributions for the unallocated length and unallocated mass of a train as input 
variables. In combination with the parameters for the length and mass of the wagons to be transported, a random 
variable  can be derived from this, which indicates the remaining capacity of the timetable train z in number of 
wagons. The aspect of train cancellations is modeled with a percentage traffic day quota  and can be seen as a 
Bernoulli distributed random variable. For the interdependency of the changeover times, a train journey also has 
random variables for the departure ( ) and for the arrival ( ), which each indicate the distribution of the real 
times including the delays. In general, the distributions for delays and capacity are to be understood as conditional 
random variables under the condition that a train is not canceled. 

All these distributions are read and aggregated from the historical recorded data of DB Cargo and are therefore 
discrete. The aggregation is done per timetable train and per day of the week. It is assumed that all random variables 
of a timetable train and between different timetable trains are stochastically independent to each other. Even if the 
observation period is longer than one week, so that timetable trains occur several times in the model on the same 
day of the week, their weights are considered to be identical but independently distributed. In reality, it is likely 
that this assumption does not apply completely. How strong correlations are in reality and how realistic this 
assumption is will be investigated in the validation study. 

The forecast result returned by the model is the stochastic distribution of the shipment time, i.e. the difference 
between arrival time of the shipment at its destination freight transport station and the departure time at its origin 
freight transport station. 

2.2. Mapping the Model onto a Graph Structure 

The transportation options are represented by a directed and weighted graph, because then the question of how 
many wagons can be transported through the network in total can be represented as a maximum flow problem and 
solved accordingly. 

The nodes and edges of the graph vary depending on route and timetable. However, the graph structure always 
follows the same pattern. There are always two fixed nodes, s and t, which represent the shipment's origin and 
destination. The other nodes are arranged in columns between them: For each changeover location, there is a 
column with arrival nodes and another column with departure nodes. Between a departure node (or the start s) and 
an arrival node of the next changeover location in the shipment route (or the destination t), there are directed edges 
that represent the timetable trains. Between an arrival node and a departure node of the same changeover location, 
the edges represent possible shunting transitions between the trains. Due to possible delays or early arrivals, all 
changes (both planned and those not possible according to the plan) are stochastically functional with a certain 
probability. Therefore, corresponding edges are inserted into the graph for all conceivable changeovers. 

 

Fig. 2. The resulting graph structure in reference to the example in Fig. 1. The edge weights are simplified as a possible realization scenario 
of the actual random variables. 

 
The graph is built up for a certain period of time, the so-called option period. This period begins at the time of 

the earliest possible departure of the shipment and ends at the latest possible arrival. When building the graph, 
exactly those trains are considered that depart and arrive in the option period. 

The resulting graph G has the vertex set  . 



 

The edge set E(G) is the union of the train edges 
 

and the changeover edges 
 . 

The weighting of the edges indicates how many wagons can use them. However, since all input variables are 
stochastically distributed random variables, the edge weights are not fixed numbers either, but stochastically 
distributed variables. 

For an edge that represents a ride of the timetable train z, the weighting is based on the input variable , because 
this indicates how many wagons can additionally be assigned to this train. However, the edge weighting differs 
from  because here the probability of a train cancellation is additionally considered as a free remaining capacity 
of 0. For edges that represent a changeover, the weighting is always a Bernoulli distributed random variable that 
can be 0 or infinity, depending on whether this transition is possible in time or not. The probability that a 
changeover works in time can be derived from the delay distributions of the arrival and departure events in 
combination with the minimum changeover time of the station, which are all given as model input. 

This graph structure also represents the time component of the changeovers in the edge weighting. The problems 
of train capacities, train failures and changeover times have thus been abstracted to a common mathematical 
problem. 

There are now two different ways of determining the possible number of wagons that can be transported in the 
option period from this graph. The maximum s-t flow indicates the number of wagons that can be transported if 
the wagons in the shipment can be split between different trains. If splitting is not possible, the s-t path with the 
highest total capacity can be determined instead. Both methods will be validated later as model variants. 

However, the model should not only be able to determine the shipment capacity of an option period, but also 
return the distribution of possible arrival times for a given shipment quantity. This information can be determined 
in an iterative process in which the option period is repeatedly extended slightly. In each iteration, the graph is 
extended by the next timetable train. This is repeated until the probability that the transport capacity is at least as 
large as the given shipment quantity is sufficiently high according to the resulting distribution of the graph's 
transport capacity. The results of each iteration are accumulated into an overall distribution of arrival times. 

2.3. Analytical Solution and Implementation 

Many algorithms already exist for determining the maximum flow in a weighted graph. A well-known 
algorithm is that of Ford and Fulkerson. (Diestel, 2017). However, like most algorithms for determining the 
maximum flow, the Ford-Fulkerson algorithm works with graphs whose edges are weighted with natural numbers. 
In this case, however, the edges are weighted with random variables, i.e. it is a so-called random network. There 
are already algorithms for this case too, but they are very complex, e.g. the algorithm by (Frank and Hakimi, 1965). 
The complexity can be reduced by determining only estimates of the maximum flow instead of the exact result 
(Carey and Hendrickson, 1984). Since there is no productive application for this work so far and the calculations 
were mainly required for experimental validation, the maximum flow was calculated using a very trivial algorithm, 
which requires more computing time but is easier to implement. The individual permutations of the random 
variable values can be considered to cover all situations, because the random variables are all discrete. For a single 
permutation, a standard algorithm was then applied to determine the maximum flow with natural numbers as 
weights. The results of the permutations were then aggregated back into one weighted distribution. 

The previous approaches have shown the disadvantage that it is very complex to calculate a stochastic maximum 
flow for general random networks. As an alternative, the following approach is based on the model variant without 
possible splitting of the wagon group of a shipment. In analogy to graph theory, this means that we are no longer 
looking for a maximum flow, but only for a path whose edges all have sufficient capacity, which can be solved 
with significantly less complexity. The proposed algorithm also benefits from the layered structure of the graph. 

The algorithm considers consecutive cuts in the graph one after the other in the order of the shipment route. 
The cuts result automatically from the defined graph structure due to the set of edges for train rides on a shipment 
route section. A probability distribution is determined for each of these cuts, which indicates which train is used 
on this shipment route section and with what probability. The distribution of the first cut can be initialized 
deterministically by the given departure train. The distribution for the respective next section is then derived 
iteratively in two phases: First, the distribution of arrival times is calculated from the distribution of arriving trains. 
Then, depending on this, the distribution of the next connecting trains is determined. The probability that a 
connecting train will be selected depends on the probabilities of the changeover times, sufficient capacity, the 
cancellation rate and the condition that no previous train was selected.  

For the further validation of the model, the algorithms described above were implemented in different model 
variants in Java17 using the framework JGraphT (Michail et al., 2020). As described in the model definition, the 



 

implementation takes the timetable data and distributions for delays, train capacity utilization and train 
cancellations as input. The historically recorded data from the DB Cargo AG data warehouse for almost every 
train ride in 2022 was available for this purpose. The data records were prepared according to the aggregation 
described above. For each specific shipment relation for which a forecast should be calculated, the route and the 
scheduled trains must also be defined by a fixed configuration. 

In the validation, several model variants are to be compared, which differ, for example, in the possible shipment 
separation but also in other options. To ensure that the different model variants can be used with as little adaptation 
effort as possible, an abstraction pattern was developed in the implementation that can be used to call up all model 
variants in a standardized way. This means that the model can be automatically applied to a forecasting task and 
returns a forecasted distribution of shipment transit times. 

3. Model Validation 

The validation chapter first describes the structure of the validation study. The results of the various validation 
approaches are then shown. 

3.1. Validation Methodology 

Validation is carried out in two phases in order to distinguish between different potential sources of error. 
The first phase is a validation according to the correlated inspection approach (Law, 2014). Each shipment that 

was transported in the historical comparison period is considered individually. It is important to note that the 
statistical distributions are not used as input data for the model, as is usually the case. Instead, specific values from 
the train rides of the calendar days are used. This has the effect that correlations between the model's input variables 
that might occur in reality are already taken into account. Errors arising from the assumption of stochastic 
independence of the model's input variables are therefore excluded from this validation phase. Instead, the results 
of the correlated inspection approach provide information on whether the assumed central interdependencies of 
the model can describe the reality or whether significant relationships exist in reality that are not considered in the 
model (Law, 2014). 

In the correlated inspection approach, four different metrics are used for evaluation. For each metric, the 
shipments are counted for which the predicted and the historically actual shipment time fall within the 
corresponding acceptance period of the metric. In relation to the total number of shipments, a proportion can thus 
be determined that indicates the forecast quality of a model variant with regard to a shipment relation.  

 

 

Fig. 3. The different metrics of the correlated inspection approach. The green bars show the acceptance period of a metric in which a 
prediction is considered as successful. 

The strictest metric only accepts forecasts that hit exactly the right arrival train, so that it provides information 
about the accuracy of the model itself. In contrast, the metric not , which tolerates an earlier arrival than 
predicted, would be relevant for the question of arrival guarantees to customers. For both metrics, there is another 
metric that has a 24-hour tolerance range, so that a gradation of the forecast accuracy is possible. 

In a further step of the correlated inspection approach, the model results are no longer related to the individual 
trains, but a distribution of the transport running times is created. This is then compared with the real distribution 



 

of transport times from the historical data. The comparison is made both visually with regard to a similar shape of 
the histogram and by hypothesis testing, specifically using the Kolmogorov-Smirnov test. 

The Kolmogorov-Smirnov test was selected here because it is suitable for comparing two samples with each 
other with regard to a common population without assuming certain properties such as a normal distribution. The 
null hypothesis that the test attempts to reject is that there is such a common population of both samples. With 
trend, dispersion, skewness and excess, this test can detect differences in the distribution function of all types 
(Sachs and Hedderich, 2006). The maximum distance between the distribution functions of both samples at any 
point is used as the test measure. The larger the test measure, the more different the two samples are and the more 
likely the null hypothesis is to be rejected. 

The second higher-level validation phase, which follows the correlated inspection approach, is the aggregated 
validation. Here, model results are generated as in the normal application with aggregated distributions of input 
data. The resulting shipment times are grouped into blocks of six hours and a probability is assigned to each of 
these blocks. In particular, this means that correlations between the input data are no longer implicitly considered 
and the original assumption of statistical independence between all input variables of the model becomes effective. 
The comparison with the correlated inspection approach can therefore be used to estimate how strong the influence 
of correlations is. The real historical shipment times are also divided into blocks of six hours. This allows to assess 
the results of the model in the histogram and compare them with reality. 

The validation methods encounter a problem in relation to capacity constraints. The forecast models estimate 
the shipment time for an additional wagon quantity, but the capacity consumption of the shipment to be validated 
is already included in the historical train data. A direct comparison of historical shipment times with forecast 
results would therefore tend to overestimate the shipment time. To counter this validation error, the capacity 
consumptions of the shipments under investigation are subtracted from the historical train utilization before the 
validation. In aggregated validation, several shipments can be defined as historical capacity consumptions, while 
in the correlated inspection approach, only the one shipment under investigation is subtracted.  

As the model variants can only ever be used for a fixed relation, the validation must be carried out on a set of 
relations selected to be as representative as possible. In this work, eight relations were selected on which a large 
number of wagons and shipments were transported over the entire observed year so that the statistics are 
meaningful. It is also important that the routes are evenly distributed spatially. The selection was made in such a 
way that almost all marshalling yards at the highest hierarchical level in the German single wagonload network 
are covered by the selected sample. Elementary distinguishing features of the shipment route, which are also 
representatively covered by the selection, are the number of changeovers and the sequence of changeovers at the 
various hierarchical levels of the changeover points in the transportation network. The results of the following 
validation are either given for one of these eight relations or refer to the average of all these relations. 

3.2. Results of the Correlated Inspection Approach 

As shown in table 1, the results are very different for the various relations. There are relations on which the 
model generally provides very good results. The not delay  metric also provides reliable results with 94% with 
regard to potential customer guarantees for shipment times. On some other relations, however, the results are less 
accurate. On the worst relation, the correct arrival train was predicted in only 36% of shipments. Although the 24-
hour metric is also not good compared to other relations, it has a significantly smaller difference than the metric 
of correct trains. There are many train connections on the last spatial edge of the shipment route. This indicates 
that the frequency of connections on the last spatial edge has a large influence on the metric of correct arrival 
trains. The otherwise occurring effect that the error tolerance for the last changeover increases when many time 
points are aggregated to one arrival train is then absent. 

Furthermore, by comparing the model variants with and without capacity rules, the influence of train congestion 
on predicted shipment times can be determined. On some relations, the capacity restriction has little impact, while 
on others the forecast accuracy could be increased from 50% to 83% by taking capacity into account. 

Table 1. Results of 4 metrics of the correlated inspection approach. 



 

Transport Relation Model Variant Correct Train Not Delayed 24h Deviation Maximum 24h delayed 

Best Relation Fastest Connection 75% 78% 95% 97% 

Capacity Constraint 79% 94% 91% 99% 

Average of all 
Relations 

Fastest Connection 52% 61% 71% 77% 

Capacity Constraint 66% 83% 80% 90% 

Worst Relation Fastest Connection 12% 19% 62% 63% 

Capacity Constraint 36% 52% 69% 78% 

 
There is one further relation where the forecast quality must generally be classified as worse than on most 

relations. When looking at the chronological output, however, an interesting temporal distribution of the forecast 
errors becomes apparent. Table 2 shows this by recording separate values for the periods up to March 31, 2022 
and from April 1, 2022. It is clear that with 84% correct arrival trains in the period between January and March, 
the real transport times can be described very well by the model. In the following period, however, the forecast 
quality becomes much worse. This indicates that the general operating status of the transport network also has an 
influence on the shipment times of individual relations. 

Table 2. Detailed results on one selected transport relation. In all cases the capacity constraint was applied. 

Model Variant Validation Period Correct Train Not Delayed 24h Deviation Maximum 24h delayed 

Changeover by 
constant minimum 
time 

Total validation period 59% 66% 80% 85% 

Jan  Mar 22 84% 90% 92% 98% 

Apr  Dec 22 44% 51% 72% 77% 

Changeover by 
collection and 
resolution end 

Total validation period 57% 72% 81% 89% 

 
The differences between the various model variants are examined in more detail in the following. For instance, 

there is the model variant that does not use a fixed minimum changeover time as before, but times for resolution 
and collection ends which can be different for individual train blocks. The influence of this additional factor is 
mostly positive, but not large. The proportion of correctly predicted trains with capacity has actually decreased. A 
detailed examination of interim results has shown that in many cases the cause of this is a changeover for which a 
shunting time is scheduled that is significantly longer than the minimum changeover time. Delayed incoming trains 
would therefore theoretically have meant that the planned connections were reached less frequently. In practice, 
however, these changeovers have often worked, although the remaining changeover time after delays is less than 
the time required according to the resolution and collection ends. This also explains the greater positive change in 
the not  metric. This leads to the suspicion that delays cannot be transferred linearly to a shift in shunting 
processes. Dispositive interventions in the shunting processes could probably be the reason for this. 

The in terms of implementation more complex but also more accurate model variant with a possible splitting 
of the wagons of a shipment was carried out for all relations in the correlated inspection approach. Consideration 
of the capacity itself plays a major role, as it enabled the proportion of correct arrival trains to be increased from 
52% to 66% on average. However, the additional consideration of a possible splitting of the wagons of a shipment 
onto different trains led to only minimal changes, so that still 66% of the arrival trains are correct. 

On the one hand, it is noticeable in the historical transport data that, overall, the wagons of a shipment are rarely 
split. This may explain the small differences. There are some shipments for which an earlier arrival could have 
been achieved by splitting the wagons. In practice, however, this often did not happen. It is possible that this is 
often decided against due to the increased coupling and shunting effort involved.  

Table 3. Results of the Kolmogorov-Smirnov-Test depending on the alpha-parameter. 

Alpha-Parameter Number of Accepted Relations Number of Rejected Relations 

0,001 8 0 

0,1 6 2 

0,9 

0,999 

4 

4 

4 

4 

 
Finally, in the correlated inspection approach phase, the Kolmogorov-Smirnov test is used to check whether 

the model provides a distribution of shipment times that is very similar to the historical distribution. An error 



 

probability alpha must be selected for the Kolmogorov-Smirnov test. This indicates the probability of a type 1 
error. If alpha is set very high, the probability of a type 2 error is lower.  

Overall, it can be shown that two of the selected relations tend to reject a common population. For two other 
relations, the Kolmogorov-Smirnov test cannot make a clear statement. For four relations, however, the test clearly 
shows that the model can reproduce the real distribution of shipment times well. 

3.3. Results of the Aggregated Validation 

 In the aggregated validation, the models are applied with stochastically distributed input variables. The 
forecasted distribution of shipment times is summarized in blocks of six hours. The first 72 hours of the resulting 
probability functions of two selected transport relations are shown here as an example. All elementary 
interrelationships are representative of these.  
 

 

Fig. 4. The resulting probability functions of different model variants (Fastest Connection and with capacity constraints) applied to 2 
example transport relations. The diagrams show the distribution of shipment times in reality, the aggregated predictions of the correlated 

inspection approach (CI) and the forecast of the aggregated validation (AG).  

 
First of all, it should be noted that there are always some peaks in this type of histogram, which result from the 

timetable and the possible combinations of departure and arrival times derived from it. In addition, high 
probabilities are typically seen initially around the fastest possible connection. This is followed by smaller 
probabilities at intervals of one to two days for wagons left in gaps in the timetable around the weekend. These 
peaks can be reproduced in most places by all model variants, so that the basic shape of the probability function 
looks similar. The probability functions differ mainly in the varying intensity of these peaks. 

In the upper example, it can be seen that the aspect of capacity dominates and that there are only minor 
differences between the correlated inspection distributions and the aggregated validation. The shipment times tend 
to be shifted to the right due to the capacity restriction and the probability functions clearly approach the reality, 



 

especially for the first two peaks. The respective comparison between an aggregated distribution in contrast to the 
corresponding correlated inspection distribution also shifts the transportation times to the right and thus comes 
closer to reality. Overall, however, correlations only have a small influence here. 

The situation is different in the example below. Here, the correlated inspection distribution with capacity is 
very close to the distribution of reality in most places. In the distributions without capacity, there are no major 
differences between the correlated inspection curve and the aggregated curve except within the first three blocks. 
This indicates that there is little relevant correlation in the delay data. However, the probability distribution of the 
aggregated application of the model variant with capacity constraints looks very different and is obviously strongly 
influenced by correlations. There are probably strong correlations between the capacity utilization and delays or 
between the capacity utilizations itself. 

4. Conclusion 

In general, it should be noted that the validation results vary greatly. Both the overall model quality and the 
influence of individual factors such as capacity constraints and correlations differ greatly in some cases between 
the investigated transportation relations. This suggests that there are certain characteristics of relations and routes 
that strongly influence the quality of the models. However, no such connection can be established with regard to 
the number of changeovers and the hierarchy scheme of a relation. Instead, the long-term temporal fluctuations in 
forecast accuracy indicate that it is not the characteristics of a relation, but rather the operating situation or the 
condition of the transport system that have a decisive influence on the validation results. 

The successful correlated inspection validation on some relations shows that the assumed interdependencies of 
the model are basically well chosen and can describe the real operational processes. However, there also appear to 
be other interdependencies that only occur at some locations and in certain periods of time and have a particular 
impact on the processes in the marshalling yards. 

The result of the aggregated validation is that correlations do not have a major influence on every relation, but 
on most of them. Often only some individual input variables are affected. The assumption that all input variables 
of the model are stochastically independent should be revised in future. At least individual correlations should be 
considered in further developments of the model. 

The comparison of the different model variants showed that the consideration of train delays and maximum 
capacities is very important. However, the use of resolution and collection ends and the enabling of wagon splitting 
resulted in no or only small improvements. Therefore, it is better to use a model variant without these aspects in 
order to obtain a model that is simpler and still has approximately the same explanatory power. 

The resulting best possible model variant is therefore based on train delays, train cancellations, train capacity 
utilization and minimum changeover times for marshalling yards. These aspects are represented in a graph 
structure on which the path with the highest capacity is then determined. As the statistical comparisons with the 
Kolmogorov-Smirnov test show, the resulting distributions of shipment times based on these few but elementary 
interdependencies can reflect the real relationships of single wagonload traffic already very well. 
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