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Abstract 

This research articulates a refined approach to predicting the reliability of complex systems, integrating interval-censored 
component data with neural network modeling. By transforming maintenance logs into predictive insights, our methodology 
addresses the challenge of indeterminate system architectures, a notable gap in the current literature. The neural network's 
capacity to interpret intricate patterns from partial data underpins our model's novelty. This study's contributions spanning 
data preprocessing, reliability estimation, and model validation with augmented datasets advance the intersection of machine 
learning and reliability engineering, promising enhanced predictive accuracy and interpretability for system reliability 
assessment.  
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1. Introduction 

uninterrupted and safe functioning across various industries. In contexts where system failures can translate into 
substantial economic losses, safety risks, or critical mission failures, establishing an accurate understanding of 
system reliability is paramount. Traditional approaches in reliability prediction often necessitate a comprehensive 

 structure and the reliability of its components. However, the complexity of modern 
systems, coupled with limited accessibility to their internal architectures, makes this task challenging. Moreover, 
detecting component failures is frequently possible only after a system-level failure has occurred. 

Recent advancements in machine learning (ML) and artificial intelligence (AI) present novel opportunities in 
reliability prediction, enabling the construction of models capable of deciphering intricate patterns from data, even 

that leverages empirical reliability data derived from maintenance logs and machine-learning techniques to 
estimate the reliability of complex systems. 

Our primary objective is to build and validate a neural network-based model that predicts system reliability 
using real and augmented maintenance data. The transformation of maintenance records into interval-censored 
data allows us to estimate the reliability of individual components, which serves as a vital input for our predictive 
model. Our model strives to provide accurate and reliable predictions despite the inherent uncertainties and lack 
of explicit system structure information. 

transformation and application of real-world maintenance data, the selection of appropriate distributions for 
lidation using real and augmented data. By addressing the challenges 

related to unknown system structures and harnessing machine learning capabilities, this work aspires to contribute 
to the fields of reliability engineering and machine learning, presenting an innovative approach to reliability 
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prediction. Furthermore, it aims to furnish practitioners and researchers with valuable insights, potentially laying 
the groundwork for future advancements in reliability prediction models. 

2. Literature review 

2.1. Reliability Prediction in Complex Systems 

Reliability analysis for multi-component systems is a complex task that requires a thorough understanding of 

probab
approach is the use of fault tree analysis (FTA). FTA is a graphical method representing the system as a series of 
events and their dependencies. The top event in the tree represents the system failure, and the branches represent 

the probabilities of the different events in the tree. Another approach is the use of Markov models. These models 

different operational and failure modes, and the transitions represent how the system can change from one state to 

states and transitions (Gardoni, 2017). 
However, these traditional models are primarily designed for non-repairable systems and rely on precise 

knowledge of the system reliability model, which is often unattainable in practical scenarios such as closed-loop 
supply chains (Wang et al., 2013). For example, maintenance and operation teams frequently lack access to 
detailed spare part designs, complicating the application of classical reliability models. 

Additionally, the assumption of component independence does not hold in many practical contexts, as 
components often exhibit dependencies. This complexity was highlighted in our previous work, which identified 
dependencies among components in a repairable spare part system using field data from a GE HealthCare supply 
chain (Boujarif et al., 2024). 

To address these dependencies, several researchers have adopted advanced statistical models. Copula functions 
are used to model the joint distribution of random variables by capturing their dependence structure without 
making assumptions about their marginal distributions. Given the marginal distributions of two or more random 
variables, a copula function can be used to construct a joint distribution function that reflects the dependence 
structure between the variables. (Navarro and Durante, 2017) propose a novel approach for assessing the reliability 
of coherent systems with dependent components using copula-based representations for residual lifetimes. The 
authors consider the joint distribution of component lifetimes in a coherent system and model the dependence 
structure using copulas. They then derive copula-based representations for the distribution of residual lifetimes of 
the system, which enables the calculation of various reliability measures, such as the survival function, the mean 
residual lifetime, and the failure rate. (Lin et al., 2021) propose a copula-based Bayesian reliability analysis method 
for parallel systems with dependent components, where the component failure probability and frequency are 
modeled separately. The authors use copulas to model the dependency structure between the component failure 
probability and frequency and apply Bayesian inference to estimate the parameters of the models. The proposed 
method is illustrated through a case study of a hydraulic system. 

Selecting the best copula function depends on the data and the application. In general, the selection process 
involves two steps: model selection and goodness-of-fit testing. Several copula families, such as Gaussian, t, 
Gumbel, Clayton, Frank, and Joe, can be considered for model selection. One approach uses statistical criteria 
such as Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) to compare the goodness-of-
fit of different copula models to the data. These criteria measure the balance between the goodness-of-fit and the 
complexity of the model, penalizing overfitting. After selecting a copula model, it is essential to test its goodness 
of fit to the data. Several tests can be used, such as the Cramer-von Mises test, the Anderson-Darling test, or the 
Kolmogorov-Smirnov test. These tests measure the difference between the empirical and theoretical copula 
distributions and can indicate whether the selected copula model fits the data well. 

Other papers consider a specific copula-based approach to map the correlated variable with independent ones 
called Nataf transformation. Nataf transformation, also known as the Rosenblatt transformation, is a method used 
in statistical analysis to transform a set of correlated variables into a set of independent variables, which simplifies 
the statistical analysis process. This transformation involves a multivariate cumulative distribution function that 
maps the correlated variables into independent standard normal variables. The transformation is useful in 
applications such as structural engineering, where correlated loads and responses must be analyzed. The Nataf 
transformation simplifies the analysis by reducing the correlation between the variables. However, the 
transformation requires the estimation of correlation coefficients, which can be challenging, especially for high-



 

dimensional problems. (Xiao, 2014) discusses the evaluation of the correlation coefficient for the Nataf 
transformation. The paper analyzes the properties of the correlation coefficient in the Nataf transformation and 
proposes a new method to evaluate it using a series expansion. The proposed method is then compared to existing 
methods through numerical experiments, demonstrating its effectiveness and accuracy. (Lin et al., 2020) propose 
an efficient probabilistic power flow (PPF) approach for high-dimensional correlated uncertainty sources in 
operation based on the Nataf transformation. The approach can model the uncertainties of power system 
parameters with continuous and discrete probability distributions and consider their correlations. The paper 
presents a modified algorithm to calculate the Jacobian matrix for the transformed variables, reducing the PPF 

-bus power system and 
compared with the Monte Carlo and Quasi-Monte Carlo simulation methods. 

These advancements underscore the shift in reliability analysis from simple, independence-based models to 
more sophisticated approaches that incorporate the real-world complexities of component dependencies and partial 
system knowledge. To apply these existing models directly, however, one still needs to assume knowledge on the 
system reliability function. How to consider component dependencies without knowledge of system reliability 
function remains a difficult challenge. 

2.2. Neural Network Applications in Reliability Engineering 

The exploration of neural network applications within the field of reliability engineering has yielded notable 
advancements across various domains. (Fink et al., 2014) successfully implemented multilayer feedforward neural 

-
term degradation without error propagation. In chemical production, (Zhao et al., 2020) introduced a hybrid model 
that fuses Support Vector Machines and Random Forest algorithms, refined by the 4M1E framework, to enhance 
the accuracy of system reliability assessments. 

Furthermore, (Colombo et al., 2020) presented a machine learning model, rooted in the Finite Element Method, 
to predict the reliability of downhole safety valves. Their findings suggested a superior performance over 
traditional statistical methods, particularly when dealing with censored data. Addressing the challenges posed by 
limited data availability, (Li et al., 2021) advocated for an uncertainty theory-based approach for reliability 
evaluation, catering to situations where conventional statistical methods are inadequate. 

The effectiveness of machine learning models in reliability prediction was also demonstrated by (Alsina et al., 
2018), who compared various models against the Weibull distribution and other traditional methods, underscoring 
the strengths of methods like Random Forests, especially with increasing dataset sizes. Delving into survival 
predictions, (Kvamme and Borgan, 2021) discussed the integration of neural networks in the face of right-censored 
data, proposing novel interpolation schemes for continuous-time predictions. 

In the healthcare sector, (Suresh et al., 2022) introduced MultiSurv, a deep learning methodology that integrates 
clinical, imaging, and omics data for cancer survival prediction, noted for its capacity to manage multimodal data 
and accommodate missing information. (Arismendy et al., 2020) employed a multilayer perceptron neural network 
to predict the behavior of wastewater treatment processes with a mean absolute percentage error that aligns with 
industry standards. Lastly, (Qi and Majda, 2020) explored deep learning strategies to predict extreme events within 
turbulent dynamical systems, emphasizing the potential applicability of such models to a spectrum of complex 
high-dimensional systems. 

The collective insights from these studies highlight the transformative potential of machine learning and neural 
network methodologies in enhancing predictive precision, managing complex datasets, and contributing valuable 
insights across diverse sectors within reliability engineering.  

Despite these advancements, the application of deep learning techniques on reliability using non-continuous 
data, such as maintenance logs, has been relatively limited. While the field has evolved to handle complex multi-
sensor signals and high-dimensional data patterns (Gebraeel et al., 2009), using non-continuous, real-world data 
remains less explored (Wang et al., 2018). This suggests an untapped potential in harnessing non-continuous data 
forms for further enhancing the field of reliability analysis. 

2.3. Challenges and Gaps in Existing Approaches 

Traditional methods of reliability prediction in complex systems are often limited by the inability to process 
incomplete or censored data, the strong requirement of precisely known system structural function, and the 
challenges in handling high-dimensional data with dependencies. To address these critical gaps, we develop a 
neural network-based approach to estimate system reliability without assuming the system structure function. Our 
approach first estimates the reliability of individual components from maintenance data utilizing advanced interval 
censoring techniques. This method circumvents the common problem of data scarcity and censored information, 



 

enabling a more robust analysis. By harnessing the power of neural networks, we further refine the reliability 
prediction, as these networks can uncover complex, non-linear patterns from data, even without explicit knowledge 
on the system structural function. Our neural network model, therefore, not only predicts system reliability with 
greater precision but also enhances interpretability by incorporating domain-specific knowledge. By translating 
real-world maintenance logs into a format that neural networks can process effectively, we bridge the gap between 
data-driven models and practical reliability engineering. To sum up, our work presents a significant 
methodological advancement that tackles the prevailing challenges in the field, laying the groundwork for more 
accurate, reliable, and interpretable reliability predictions for complex systems. 

3. Modeling and Problem Description 

3.1. Problem description 

Ensuring the reliability of multi-component systems is a critical concern in systems engineering, mainly when 
such systems are not under continuous surveillance. This study tackles the challenge of reliability estimation for 
systems where the state of the components is binary and can only be observed when a system outage occurs. 
During these outages, components are classified simply as either functioning or failed, and any failed components 
are replaced. Traditional reliability models, which often rely on known system structures and continuous 
monitoring, are not applicable in such scenarios.  
Our research seeks to address this gap by proposing a novel method to estimate the survival probability of a system 
over a time period , given the known ages of its components, expressed as 

), where  are the ages for the components. This method is crucial for 
systems where component statuses are only revealed through system failures, presenting a practical solution for 
predicting system reliability. 

3.2. Methodology 

Our approach to estimating the reliability of a multi-component system without continuous monitoring unfolds 
through a series of methodical steps. Initially, we undertake the collection of comprehensive maintenance records 
across diverse systems. This data assemblage provides a historical account of component failures and repairs. 

After the data collection, the computation of component ages is done. Given the binary nature of component 
status -- operational or failed -- and the absence of continuous monitoring, we define an age interval for each 
component. 

The minimum age denoted as  the time post the last known operational status or zero for new installations. 
Conversely, the maximum age, corresponds to the failure detection time or is considered infinite for the 
components yet to fail (i.e., right censored). 

The third step in our methodology involves fitting multiple parametric distributions to the age data, governed 
by the assumption of interval censoring to estimate the reliability functions of the components. The statistical 
model that best fits the data is selected based on the Akaike Information Criterion (AIC), which is defined as: 

                                                                                                                                                      (1) 

Where  is the number of estimated parameters within the model, and  is the maximized value of the likelihood 
function for the model. The likelihood for an interval-censored component  is then expressed as: 

                                                                                          (2)   

Where  is the cumulative distribution function associated with the failure time distribution of the components, 
and   represents the parameters of that distribution. For a right-censored observation,  and the 
likelihood function simplifies as . 

Kaplan-Meier estimator, a non-parametric statistic used to estimate the survival function from lifetime data. In our 

 
The dataset is further enriched through data augmentation, where new uniform data points are generated using 

the parametric distributions of component ages and the Kaplan-Meier distribution. 



 

Finally, a neural network with multiple hidden layers, inclusive of dropout layers, is trained to predict the 

the reliability at the current age, at time , and at the age incremented by . The output is a single value between 0 
and 1. The network is trained using a mean absolute log error loss function, adjusted to avoid the logarithm of 
zero: 

                                                                     (3) 

Where  is a small constant to ensure numerical stability. 

3.3. Experimental set-up for Algorithm Validation 

The experimental design for our reliability estimation algorithm is centered around creating a controlled 
environment that mimics real-world multi-component systems. This is achieved by defining four Bayesian 
Networks (BNs) representing different system architectures: serial, parallel, bridge, and random. These networks 
model the relationships between the components and the overall system status. The crux of these models lies in 

individual components.  
In the serial system, the BN is set such that the system fails if any single component fails while the system stays 

operational as long as not all components fail for the parallel system. The bridge and random structures follow 
more complex dependencies reflected in their respective CPDs. The CPDs for these structures are designed to 
maintain the coherency of the system, meaning the system cannot be more reliable than its least reliable 
component. 

Once the BN structures are in place, we assign a specific lifespan distribution to each component, reflecting 
how we expect these components to behave over time. The time of observation and the steps for the simulation 
are then established, with  representing the total number of systems we will simulate. 

The data generation process starts by calculating the initial reliability of each component. These reliability 
scores serve as the initial probabilities for the BN component nodes. From here, we simulate  observations of 
system states at the first step. 

As time progresses, for each component that has not failed, we calculate the conditional probability that it will 

the BN. If a component fails, we record this and update the system state accordingly. If the system is still 
 

This process is repeated for each time step until we reach the end of our observation period. If the system fails, 
we rese  

The resulting data set captures the various states of the system and its components over time. Our analysis 
focuses on the data points where system failure occurred. Using the BN and the lifespan distributions we assigned 
earlier, we calculate the probability that the system would have lasted longer than it did, given the ages of the 
components at the time of failure. This calculated probability is our benchmar

 

3.4. Results and analysis 

In our investigation, we simulated the lifespan of 500 systems over a period equivalent to five years, measured 
in unit time intervals of 30 days. Each system comprised six components, with their time-to-failure (TTF) 
following an exponential distribution characterized by mean values of  
respectively, to mirror a realistic variance in component longevity. We split the generated data into train and test 

for performance evaluation. 
To quantify the predictive accuracy of our model, we employed two error metrics: Mean Absolute Error (MAE) 

and Mean Absolute Percentage Error (MAPE). These were chosen for their ability to capture average deviations 
and relative discrepancies from the true reliability values, respectively. To mitigate the distortion of error metrics 
due to small denominators, we incorporated a shift of 1 into the MAPE calculation, as described by the following 
equations: 

                                                                                                                                           (4) 

                                                                                                                                         (5)  



 

where  represents the true reliability values estimated using our generated bayesian network model under the 
  denotes the estimated reliability from 

our developed approach. 
The outcomes of this evaluation are succinctly encapsulated in Table 1, which delineates the MAE and MAPE 

across various system structures. 

Table 1. Summary of Model Error Metrics Across Different Structures. 

Error Metrics Series Structure Parallel Structure Bridge Structure Random Structure 

MAE% 12 36 0.08 19 

MAPE% 7.7 20.18 5.2 12.43 

 

system configurations. A synthesis of the results indicates a MAPE that fluctuates significantly, with a modest 5% 

fall within a tolerable error range, affirming its practical value for reliability assessments. Nonetheless, the 
disparity in error magnitudes across various structural paradigms calls for an in-depth analysis to identify and 
understand the underlying causes of these discrepancies.   

In our in-depth examination of 
uncertainty inherent in our methodological approach. This method relies on interval-censored data to estimate 
component reliability and construct an empirical multivariate survival distribution for system reliability labeling. 

principal sources of uncertainty: 
 The uncertainty in the reliability estimates of individual components. 
 The uncertainty embedded in the system reliability assessment process. 
 The uncertainty inherent to the predictions generated by the deep neural network. 

A critical aspect of our evaluation involved contrasting the neural network s predictions against those derived 
from the Kaplan-Meier estimator, considered the standard for true system reliability. This juxtaposition evaluated 
our model s adeptness under the hypothetical scenario where we could ideally ascertain the system s empirical 
reliability. 

Table 2. Comparison of Model Error Using Kaplan-Meier Estimates vs Theoretical Reliability. 

Error Metrics Baseline R Series Structure Parallel Structure Bridge Structure Random Structure 

MAE% Kaplan-Meier 9 28 7 1 

MAE% Bayesian network 12 36 8 19 

MAPE% Kaplan-Meier 7.17 17.85 5.15 7.95 

MAPE% Bayesian network 7.7 20.18 5.2 12.43 

 
Table 2 showcases the error metrics when using the Kaplan-Meier as a proxy for the true system reliability 

against theoretical reliability computations. Notably, the error margins contracted in all scenarios when 
benchmarked against the empirical reliability standard, suggesting that a refined approximation of true empirical 

on-parallel structures, 
where the MAE and MAPE are markedly reduced. This insight propels us to suggest future research directions 
focused on enhancing the labeling process for training data and exploring training methodologies that incorporate 
confidence intervals. Delving into deep learning models adept at managing aleatory uncertainty could also yield 
more resilient predictive performance. 

On the other hand, the use of interval-censored and right-censored data introduces another layer of uncertainty. 
These types of censoring can lead to inaccuracies in estimating component failure distributions and, subsequently, 

when predicting the reliability of individual components within each structure. Specifically, the inherent data 
pattern of parallel structures  where system failure is predicated on the concurrent failure of all components  
could inadvertently lead to the presumption that components share a uniform failure distribution. 

A detailed graphical analysis, as shown in Figure 1, compares estimated reliability functions against actual data 
for selected components within various structural configurations. The divergence between the estimated and true 
reliability of components in each structure shows a mixed level of accuracy from the model. In series and bridge 
structures, the model estimates are pretty close to the true reliability, with only minor divergences, suggesting a 



 

good fit. The parallel structure exhibits a significant divergence, particularly as time progresses, indicating the 

for system failure. The model demonstrates a slight but consistent underestimation across components in the 
 

We utilize the Kullback-Leibler (KL) divergence in addition to MAE and MAPE to quantify this divergence. 
KL is a measure of the discrepancy between two probability distributions. For discrete distributions  and , the 
KL divergence is defined as: 

                                                                                                                                     (6) 

where  represents the true probability and  represents the estimated probability of the -th event. This 
statistical measure is particularly effective in highlighting the differences in expected versus observed outcomes. 

Table 3 provides a quantitative assessment of this divergence. The Kullback-Leibler (KL) divergence and Mean 
Absolute Error (MAE) values are generally low in the bridge and series structures, suggesting a closer match 
between the estimated and true reliability distributions. The MAPE is also relatively low, indicating a more minor 
relative error. Conversely, the parallel structure shows notably higher values in all three metrics, particularly the 
MAPE, which indicates a significant relative er
exhibits moderate divergence and error values, with the MAPE indicating more substantial relative errors than the 
bridge and series but less than the parallel. Across all structures, there is a discernible variation in error rates, with 
the average divergence reflecting the aggregated disparity between the estimated and true distributions for each 
structure. 

 

Fig. 1. Estimated vs. True Reliability Functions for Components in Different Structures. 

 

 

 

 



 

Table 3. Summary of MAE, MAPE and KL divergence metrics. 

Structure Metric C1 C2 C3 C4 C5 C6 Average 
divergence 

Bridge 

KL 
Divergence 0.023 0.7636 0.0456 1.2803 0.0605 0.2481 0.4035 

MAE% 0.0638 0.127 0.0287 0.2014 0.0586 0.0897 0.0949 

MAPE% 5.9374 10.3767 2.6246 14.8782 5.3369 7.6271 7.7968 

Parallel 

KL 
Divergence 8.9907 13.4423 10.1267 14.5871 10.3513 12.6974 11.6992 

MAE% 0.0943 0.2612 0.1176 0.3879 0.1231 0.2112 0.1992 

MAPE% 8.7758 21.3416 10.7547 28.6556 11.2111 17.958 16.4495 

Random 

KL 
Divergence 0.0195 0.3157 0.0515 0.644 0.0622 0.1639 0.2095 

MAE% 0.0294 0.107 0.0373 0.1934 0.0367 0.0797 0.0806 

MAPE% 2.736 8.7426 3.4111 14.2872 3.3424 6.7768 6.5494 

Series 

KL 
Divergence 0.026 0.322 0.0283 0.5329 0.0274 0.149 0.1809 

MAE% 0.0259 0.1015 0.0363 0.198 0.0372 0.0742 0.0788 

MAPE% 2.4103 8.2932 3.3197 14.627 3.3879 6.3091 6.3912 

 
The comparison of the average divergence in MAE from Table 3 with the MAE for the baseline Bayesian 

network in Table 2 suggests that the uncertainty in the reliability estimates of individual components is the primary 
error source affecting the model accuracy. For the bridge structure, the average divergence in MAE was low, and 
this aligns with a low MAE for the baseline in the bridge structure, indicating consistent and accurate predictions. 
However, in the parallel structure, the average divergence in MAE was relatively high, mirrored by a high MAE 
value, underscoring significant predictive discrepancies. This 
areas where improvements are needed, especially in the parallel structure where predictive performance is notably 
weaker.  

In summary, the devised methodology demonstrates a competent capacity to estimate the reliability of complex 
systems within an acceptable margin of error. This model is particularly adept when applied to systems 
characterized by intricate structures or varied failure mechanisms. Nonetheless, the accuracy diminishes notably 
when addressing systems with parallel structures. The precision of predictions is considerably influenced by the 
breadth of interval censoring and the fidelity of empirical survival function estimates for system reliability. For 
future endeavors, it is suggested that research explores the application of autoencoder algorithms, which can 
discern the distributions of component and system reliability intrinsically, thereby obviating the requirement for 
separate data point labeling. 

4. Conclusion 

Concluding this paper, we have presented a novel approach for predicting the reliability of complex systems, 
leveraging neural network modeling in conjunction with interval-censored data on the component level. Our model 
showcases a robust predictive ability for various system structures, delivering estimates within a reasonable error 
threshold. This is particularly noteworthy in systems with diverse and intricate failure dynamics, where traditional 
predictive methods may not work well. 

 performance indicates a limitation in accurately capturing the behavior of parallel system 
structures, where the interdependencies and collective failure modes present substantial challenges. The accuracy 
of our predictions is closely tied to the precision of interval censoring and the quality of the empirical system 

 
Looking ahead, further advancements in this domain are crucial. A promising direction for future research lies 

in the utilization of autoencoder algorithms. These algorithms can directly learn the underlying distributions of 
component and system reliability from the data. They could streamline the modeling process, reducing the 
dependence on sep
structures. 



 

design, maintenance, and operation. By improving the accuracy and reliability of predictive models, we can better 
anticipate system failures, optimize maintenance schedules, and mitigate potential risks. Consequently, this 
contributes to the advancement of reliability engineering and has the potential to inform more resilient system 
designs in the future. 
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