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Abstract 

Electric vertical take-off and landing (eVTOL) aircraft are a futuristic, sustainable transportation mode aimed at reducing traffic 
congestion. The health management of eVTOL batteries is key for the deployment of such aircraft. In this paper, we consider 
the continuous monitoring of eVTOL batteries, with streams of measurements related to the charging, discharging, and 
temperature of the batteries. Based on these measurements, we develop a Convolution Neural Network with Monte Carlo 
dropout to estimate the distribution of the State-of-Health (SOH) of the batteries, i.e., we develop probabilistic SOH 
prognostics. The features used for the SOH estimates are selected based on the feature importance quantified by Shapley values. 
The obtained probabilistic SOH prognostics are further employed for the maintenance planning of the eVTOL batteries. The 
results show that our approach leads to accurate SOH estimates. Moreover, we are able to identify optimal times for eVTOL 
battery replacement, as a trade-off between the cost of unexpected failure and the cost of wasted battery life. 
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1. Introduction 

Urban mobility needs, together with traffic congestion, are expected to increase in the coming years. To address 
this, electric short-range aircraft such as electric Vertical Take-off and Landing (eVTOL) aircraft are seen as a 
promising solution. Existing eVTOL designs achieve average ranges of 50-100km, at an average speed of 
200km/hr, having a payload of up to 500-800kg (Polaczyk, Enzo, Wei, & Mitici, 2019). The most frequently 
considered battery technology for current eVTOLs is lithium-ion due to its high energy density, low self-discharge 
rates and feasible costs (Mitici, Hennink, Pavel, & Dong, 2023). Battery management, however, is one of the main 
challenges for EVTOL operations. In particular, the continuous monitoring of the state-of-health of the battery is 
a priority for safe and efficient eVTOL operations. 

Several studies have focused on lithium-ion battery management for on-ground vehicles, with a focus on 
estimating the State-of-Health (SOH) and the Remaining-Useful-Life (RUL) of the batteries (Tian, Qin, Li, & 
Zhao, 2020). Different from the operations of electric ground vehicles, the take-off and landing are critical phases 
of an eVTOL flight, with larger battery discharge rates compared to the cruise phase. In the long-run, this is 
expected to have a direct impact on the SOH of the batteries. In this paper, we analyze the SOH of eVTOL batteries 
by distinguishing the use of the battery at different stages of the flight  take-off, cruise, and landing.  

For SOH estimation of lithium-ion batteries, many recent studies consider data-driven machine learning 
approaches. In (Mawonou, Eddah, Dumur, Beauvois, & Godoy, 2021), the SOH of batteries of automotives is 
estimated using random forest together with two aging indicators, which consider the distance, speed, temperature, 
and charging power of the automotives. In (Liu, Zhao, Wang, & Yang, 2020), a support vector regression is 
proposed, which is based on dynamic health indicators extracted from the battery charging curves. A random forest 
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regression is proposed in (Li, et al., 2018) based on directly measured signals such as current and voltage. The 
authors develop online, accurate estimates for the SOH with a root-mean-square error of less than 1.3%.  

All studies above, however, consider batteries that are envisioned for ground operations, with constant CC and 
CV cycling. For electric vertical take-off and landing (eVTOL) aircraft, the characteristics of the flight and 
particularly the critical take-off and landing phases of a flight, pose additional challenges for the health 
management of the eVTOL batteries, compared to batteries for ground operations. To the best of our knowledge, 
the dataset in (Bills, et al., 2023) is the first to consider the health monitoring of eVTOL batteries. This dataset 
includes distinct eVTOL mission profiles and battery measurements specified for the take-off, cruise, and landing 
phase of the flights. In particular, the batteries are subject to different C-rates during the discharge phase of a flight, 
with the take-off and landing of eVTOLs being  performed at a larger C-rate than during the cruise phase. 
Moreover, the batteries undergo various flight conditions across flight missions, with the temperature, power 
during discharge, and cruise length being varied across multiple missions. Only a few, recent studies have 
developed SOH and/or RUL prognostics for the eVTOL batteries using the dataset (Bills, et al., 2023). In 
(Granado, Ben-Marzouk, Saenz, Boukal, & Juge, 2022), the authors develop SOH estimates for the batteries using 
linear regression, support vector machines (SVM), k-nearest neighbors (kNN), random forest (RF) and light 
gradient boosting machine (LGBM), with the kNN outperforming the other four algorithms. However, (Granado, 
Ben-Marzouk, Saenz, Boukal, & Juge, 2022) considers only the measurements recorded during the cruise phase 
of the flight, which is a strong limitation since the vertical climb and descent are the most critical phases for the 
battery life of eVTOLs. In (Mitici, Hennink, Pavel, & Dong, 2023), the authors consider all the flight phases (take-
off, cruise, landing) and develop machine learning models for both SOH and RUL prognostics. The results show 
that the features with the highest importance for SOH estimation are the (variance, minimum) voltage recorded 
during take-off and the duration of the CC-CV charging phase. As such, the authors show the importance of 
discriminating features based on the flight phases of the eVTOLs. Accurate SOH prognostics are achieved by 
employing a Random Forrest Regression with a 5-fold cross validation. Similar to (Mitici, Hennink, Pavel, & 
Dong, 2023), in this paper we also consider all phases of the flight (take-off, cruise, landing) and discriminate 
between these phases when constructing features for SOH prognostics. Different from existing studies on health 
prognostics of eVTOL batteries, however, in this paper we estimate the distribution of the SOH, i.e., we obtain 
probabilistic SOH prognostics, rather than generating point estimated of the SOH. Moreover, we further employ 
these probabilistic SOH prognostics for the maintenance planning of the batteries. 

In this paper we propose a framework for probabilistic SOH prognostics and predictive maintenance planning 
of eVTOL batteries. We generate features based on variables related to the charge/discharge protocols, the 
temperature at which batteries are exposed, the flight phases of the eVTOLs and original voltage-capacity/time 
curves. We consider an End-of-Life (EOL) for the eVTOL batteries of 85% of the battery capacity, rather than 
80% as it is commonly assumed for on-ground electric vehicles. This is due to the rapid degradation of the batteries 
in the case of eVTOLs. We estimate the distribution of the SOH of the batteries using a Convolutional Neural 
Network with Monte Carlo dropout. These prognostics are re-generated/updated periodically, after every capacity 
test, as more measurements become available. The results show that our approach approximates well the 
distribution of the SOH, with the Continuous Ranking Probability Score (CRPS) indicating a well centered 
distribution around the true SOH. We further employ the obtained distribution of the SOH to determine an optimal 
replacement time for the batteries, taking into account the high cost of a battery being inoperable as it reaches its 
EOL, and the cost of early battery replacement or, equivalently, the cost of wasting the life of the battery. Overall, 
we provide an end-to-end predictive maintenance planning for eVTOL batteries, taking into account the ongoing 
monitoring of the health state of these batteries. 

This paper is organized as follows. In Section 2 we introduce the eVTOL battery dataset and formalize the 
eVTOL mission profiles. In Section 3 we develop features for SOH estimation based on the measurement 
available, and quantity the importance of these features by determining their Shapley value. We further develop a 
Convolutional Neural Network with Monte Carlo dropout to obtain probabilistic SOH prognostics. In Section 4 
we introduce a maintenance planning framework for battery replacement, based on the probabilistic SOH 
prognostics obtained. Lastly, Section 5 provides the conclusions of this study. 

2. Data description 

We consider the condition-monitoring dataset for Sony-Murata 18650 VTC-6 cell lithium-ion batteries (Bills, 
et al., 2023). These batteries are used to perform a sequence of missions  for VAHANA electric take-off and 
landing (eVTOL) aircraft. One battery is allocated for sequence of missions, with each of these missions following 
a given mission profile, i.e., a Constant Current (CC) battery Charging phase, a Constant Voltage (CV) battery 
Charging phase, a Rest period,  a Takeoff segment at a given power, a Cruise segment at a given duration and 



 

power, a Landing segment at a given power. In total, dataset (Bills, et al., 2023) consists of 22 distinct mission 
profiles (MP1-MP22), see Table 1.  

Table 1: Characteristics of the mission profiles (MPs) based on (Bills, et al., 2023), with MP1, MP13 and MP20 baseline mission profiles. 

 Cruise 
duration 

(sec) 

Power 
take-
off 
(W) 

Power 
cruise 
(W) 

Power 
landing 

(W) 

CC CV Ambient 
temperature 

 

VAH # 
missions 

# 
capacity 

tests 

MP1  800 54 16 54 1C 4.2 25 VAH01 847 16 

MP2 1.25*800 54 16 54 1C 4.2 25 VAH02 625 12 

MP3 800 0.9*54 0.9*16 0.9*54 1C 4.2 25 VAH05 1615 29 

MP4 800 54 16 54 0.5*1C 4.2 25 VAH06 9290 19 

MP5 800 54 16 54 1C 0.9524*4.2 25 VAH07 339 44 

MP6 800 54 16 54 1C 4.2 0.8*25 VAH09 8527 23 

MP7 800 54 16 54 1C 4.2 1.2*25 VAH10 1431 27 

MP8 800 0.8*54 0.8*16 0.8*54 1C 4.2 25 VAH11 2249 44 

MP9 0.5*800  54 16 54 1C 4.2 25 VAH12 2349 45 

MP10 0.75*800 54 16 54 1C 4.2 25 VAH13 1042 19 

MP11 1.25*800 54 16 54 1C 4.2 25 VAH15 554 10 

MP12 800 54 16 54 1.5*1C 4.2 25 VAH16 559 10 

MP13 800 54 16 54 1C 4.2 25 VAH17 1002 19 

MP14 800 54 16 54 1.5*1C 4.2 25 VAH20 611 11 

MP15 1.25*800 54 16 54 1C 4.2 25 VAH22 579 10 

MP16 800 54 16 54 1C 0.9762*4.2 25 VAH23 697 13 

MP17 800 54 16 54 0.5*1C 4.2 25 VAH24 801 15 

MP18 800 54 16 54 1C 4.2 0.8*25 VAH25 554 10 

MP19 0.75*800 54 16 54 1C 4.2 25 VAH26 1164 22 

MP20 800 54 16 54 1C 4.2 25 VAH27 587 11 

MP21 800 0.9*54 0.9*16 0.9*54 1C 4.2 25 VAH28 1182 22 

MP22 800 54 16 54 1C 4.2 1.4*25 VAH30 919 17 

 
In Table 1, VAH01, VAH17, and VAH27, are baseline mission profiles. Starting from these baseline 

mission profiles, mission parameters are varied to obtain the remining mission profiles. Under a baseline mission 
profile, during the CC charging phase, the battery is charged at 1C rate until the battery voltage reaches 4.2V. This 
is followed by the CV charging phase, when a constant voltage of 4.2V is maintained until the current drops below 
C/30. Charging is followed by a cooling period when the battery temperature reaches 35 . After the Rest period, 
a mission is performed. Under the baseline mission profile, the mission is characterized by a Take-off phase of 
75sec, during which a discharge rate of 5C is observed. The cruise phase follows for a duration of 800sec. 
Subsequently, the landing phase lasts for 105sec during which the battery is subject to a discharge rate of 5C. 

 shows the characteristics of the first capacity test of the battery 
under VAH01 mission profile. The CC charging phase has a duration of 50min, when the battery is charged with 
3.0A. The CV charging phase follows for 33min with 4.2V. Next, the Rest period has a duration of 14min. The 
discharge phase starts as soon as the eVTOL takes-off, having a duration of 75sec. During take-off, the voltage 
drops from 3.92V to 3.62V. Next, the cruise phase has a duration of 800sec. Lastly, the landing phase takes 105sec, 
during which the voltage drops from 3.57V to 3.1V. Finally, a Rest period of 605sec follows. At the end of the 
Rest period, the battery reaches a temperature of 27.3 . 
 

Measurements - during each mission, the following measurements are recorded: time (sec), cell voltage 
(V), cell current (mA), energy supplied to the cell during charge (Wh), charge supplied to the cell during charge 
(mAh), energy extracted from the cell during discharge (Wh), charge extracted from the battery cell during 

-of-Discharge (DOD) after 1 and 30 sec 
-of-Discharge (DOD) after 1 and 30 sec of low current , cycle number 

(-), cycle segment (-). 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Characteristics of the first capacity test of the battery under mission profile VAH01. 

Capacity tests - Given a profile mission, after every 50th mission, the residual battery charge is discharged at a 
rate C/5 until the voltage drops below 2.5V and SOC=0%. Subsequently, a period of Rest is observed, during 

 Following this cooling phase, the battery is charged to 
SOC=100% at a charging rate of 1 C-rate and a constant voltage of 4.2V. Having the battery fully charged, the 

Table 1 shows the total number of capacity 
tests under each of the 22 mission profiles. We note that the very first mission of an eVTOL is a capacity test. 

To estimate the battery SOH, we consider the battery capacity during capacity tests only. We only focus on the 
capacity tests since dynamic capacity estimation would require an extensive analysis and hyperparameter tuning, 
which may be prone to estimation errors (Xiong, 2020). In contrast, a regular static capacity calibration is more 
reliable for testing purposes.  

Data processing of mission profiles  mission profiles MP8 (VAH11), and MP19 (VAH26) have their 
impedance data incomplete or missing, respectively. As a result, we will not consider these two mission profiles 
in our analysis. Mission profiles MP4(VAH06), MP6(VAH09), MP19 (VAH26), MP20(VAH27) exhibit a 
decreasing capacity (mAh) across subsequent capacity tests, with a significant drop starting from capacity test 15, 
11, 5, 5 respectively. This drop is observed for three consecutive capacity tests, after which the capacity 
unexpectedly increases significantly. Thereafter, the capacity decreases smoothly across the remaining capacity 
tests. To adjust for this unexpected behavior in the data, the capacity  corresponding to capacity tests  in the 
capacity dip have been smoothened as . 

3. Probabilistic SOH prognostics using Convolutional Neural Networks with Monte Carlo dropout 

In this section we propose a data-driven machine learning approach to estimate the distribution of the State-of-
Health (SOH) of the batteries based on the measurements available across multiple missions (see Section 2). We 
first define the SOH of a battery. Next, we design features based on the available measurements in the dataset 
(Bills, et al., 2023), and select those features with the highest importance for SOH estimation. Lastly, using the 
selected features, we introduce a Convolutional Neural Network to estimate the distribution of the SOH of the 
batteries. 

Let  define the set of mission profiles considered, with . Let  define the number of 
capacity tests of mission profile . We define the SOH of the battery under mission profile  at capacity test 

, denoted by , as follows: 
, 

where  is the capacity at capacity test  of mission profile , and  is the capacity at 
the first capacity test  of mission profile  

3.1. Feature engineering 

Following (Mitici, Hennink, Pavel, & Dong, 2023), we consider a total of 37 features. These features are related 
to the charging, discharging, temperature and impedance of the battery, as follows. 

 Charging-related features 



 

Given the impact of the duration of the CC and CV charging on the battery capacity across missions (Caiping, et 
al., 2017), we consider the following charging related features: the duration (sec) of the CC charging phase of 
capacity test  of mission , denoted by ; the duration (sec) of the CV charging phase of capacity test  of 
mission , denoted by ; the duration (sec) of the Rest period after the charging of capacity test 

 of mission , denoted by , with . 
 Discharge-related features 

We consider features related to i) the discharge voltage of the battery, ii) the discharge capacity, and iii) the 
duration of the discharge during each segment of the mission (take-off, cruise, landing). Because the discharge 
voltage varies during the mission segments take-off, cruise, landing, as well as across capacity tests, we capture 
the impact of these variations by considering the as voltage-related features the maximum, minimum, mean, and 
the variance of the voltage during each mission segment (take-off, cruise, landing) of capacity test  of mission , 
which we denote by , , , , respectively, with 

. The discharge capacity and its variation reflect the load characteristics of the battery. The evolution of the 
discharge capacity across missions is captured by the maximum, minimum, mean and the variance of the discharge 
capacity during each mission segment (take-off, cruise, landing) of capacity test  of mission , which we denote 
by , , ,  respectively, with . 
Lastly, we consider the duration of the discharge during each mission segment, denoted by , 

. 
 Temperature-related features 

For all batteries in the dataset, it holds that as the battery ages, the temperature of the battery tends to increase. To 
capture the battery temperature across missions, we consider the maximum temperature reached during each 
mission segment (take-off, cruise, landing), denoted by  with . 

 Impedance-based features 
Additionally to the measurements, we consider the calculated impedance at 20% Depth of-Discharge (DOD) after 
1 sec and after 30 sec of low current, denoted by respectively, and the impedance at 60% Depth 
of-Discharge (DOD) after 1 sec and after 30 sec of low current, denoted by  respectively, during 
each mission . 

3.2. Feature importance quantification and feature selection 

In Section 3.1 a total of 37 features have been considered. In this section we quantify the importance of these 
features for SOH estimation using the  Shapley additive explanations (SHAP) values (Lundberg & Lee, 2017), 
which determine the impact of a feature on the SOH estimation. We determine the SHAP value as follows: 

, 

where  is the set of all features considered for the SOH estimation algorithm,  is a subset of features 
obtained from the set  except feature , and  is the expected algorithm output given by the set  of considered 
features. The SHAP value quantifies the magnitude of the impact, i.e., how much a specific feature value 
contributes to the accurate estimation of the SOH, where a large SHAP value for a given feature indicates a large 
importance of this feature for the SOH estimation. 

 shows the SHAP values obtained for the 37 features considered. 
Based on the SHAP values, we select the top 65% features with the highest SHAP value (importance), leading to 
a total of 24 selected features for SOH estimation. The results show that the variance of the voltage during take-
off, , which increases as the SOH decreases, has the highest importance. The CC and CV charging 
durations,  and also exhibit a high importance, followed by the minimum voltage during take-off, 

, and the impedance at 60% DOD, , and the maximum voltage during the cruise segment, . 
As expected, the features related to the take-off segment have a high importance since the battery experiences a 
high discharge voltage during take-off. Due to the high discharge voltages, the internal resistance increases. This, 
in turn, impacts the SOH of the battery (Huang, Tseng, Liang, Chang, & Pecht, 2017). Also, the high importance 



 

of the duration of the CC charging phase is expected, since, as the number of missions performed by the batteries 
increases, the SOH decreases while the duration of the CC charging phase increases. 

Fig. 2. SHAP values - feature importance. 

 
3.3. Convolutional Neural Network with Monte Carlo dropout for probabilistic SOH prognostics  

 
The CNN has  convolutional layers, with each layer consists of  , i.e.,  

one-dimensional kernels. The convolutional operation in the th convolutional layer for the th filter  is 
(Wang, Lei, Li, & Yan, 2019): 

 
where  is the th feature map of layer , * is the convolutional operator,  are the feature maps in layer , 

 is the bias of the th filter of layer , and  denotes the hyperbolic tangent activation function. We then 
consider a single convolutional layer with one filter, where each kernel has a size of . This layer combines 
all  feature maps in one single feature map. Let  denote the output of this last convolutional layer. 
     Finally, we add two fully connected layers which predict the RUL based on the extracted features of the last 
convolutional layer. The output  of the first fully connected layer is (Wang, Lei, Li, & Yan, 2019): 

 
where  is the bias and  are the weights of the first fully connected layer. A second fully connected layer with 
one neuron and the ReLU activation function outputs the SOH prediction, where the ReLU activation function has 
an upper and a lower bound to ensure that . 

Monte Carlo dropout 
Commonly, Monte Carlo dropout is applied in the training phase of the neural networks to avoid overfitting. 

To obtain the distribution of the SOH, i.e., to obtain probabilistic SOH prognostics, we also apply Monte Carlo 
dropout in the testing phase  

Fig. 3. Illustrative example of a neural network with Monte Carlo dropout, during two passes of a sample through a network. 

of the CNN (Gal & Ghahramani, 2016).  In this line, (Gal & Ghahramani, 2016) shows that such a neural 
network with Monte Carlo dropout approximates a Bayesian neural network representing a deep Gaussian process. 

We consider a dropout rate  in each layer of the CNN, except the first layer so that we avoid the loss 
of input information. We perform 1.000 forward passes through the network for each test sample. During the pass, 
a  fraction of the neurons are dropped, which generates a potentially different SOH estimate. Considering all 



 

passes, we obtain a distribution of the SOH estimate.  shows an 
illustrative example of a neural network with Monte Carlo dropout with two passes. 
 
3.4. Performance metrics 

 
Using CNN with Monte Carlo dropout, we estimate the distribution of the SOH of the batteries for all 20 

mission profiles considered and at each capacity test. We evaluate the performance of your SOH estimates using 
the Mean Absolute Error ( ), the Root Mean Squared Error ( ), the Continuous Ranking Probability 
Score ( ), which assesses the estimation performance of the probabilistic RUL prognostics, and the Weighted 
Continuous Ranking Probability Score ( )  (de Pater & Mitici, 2022), which penalizes the 
over/underestimation of the RUL as follows: 

, with ; 

, with ; 

with  ; 

with  

where is the true battery SOH at capacity test of mission profile  ,  is the mean of the predicted 
distribution of SOH at capacity test of mission profile ,  is the estimated, empirical CDF of the 
RUL at capacity test of mission profile , and  an user-defined penalty parameter for the RUL being 
overestimated/underestimated, with . The smaller the CRPS metric is, the closer the RUL estimate is 
to the actual RUL. For a perfect RUL prediction, and .  

3.5. Numerical results  Probabilistic SOH prognostics of eVTOL batteries 
 

We illustrate our RUL estimation methodology for the selected 20 batteries and their mission profiles, using a 
leave-one-out approach, i.e., we consider 20 experiments, choosing a different battery for testing in each 
experiment, while the remaining 19 batteries are used in the training phase. We update the SOH prognostics 
periodically, after every capacity test, as more measurements become available. 

Table 2: Performance evaluation of the CNN with Monte Carlo dropout for SOH estimation. shows the 
performance of the CNN with Monte Carlo dropout for SOH estimation. The results show that the SOH is 
estimated well for all VAH, with the lowest MAE of 0.51% for VAH17 and the highest MAE of 2.65% for VAH30. 
Most importantly, the distribution of the SOH is also accurately estimated, with the lowest CRPS of 0.38 for 
VAH17 and VAH24, while the highest CRPS is 2.35 for VAH30. Also, for those batteries when , 
the results show that SOH is relatively often underestimated. In the other cases, the SOH is overestimated. When 
considering all batteries, the results show that the CNN relatively often underestimates the actual SOH.  

 shows an example of the estimate distribution of the SOH for 
VAH09 at the 1st and 9th capacity test. The true SOH is given in the red, vertical line, while the green vertical line 
is the average of the estimated distribution. 



 

Table 2: Performance evaluation of the CNN with Monte Carlo dropout for SOH estimation. 

VAH#     

VAH01 1.30 1.73 1.03 0.61 

VAH02 1.77 1.89 1.51 0.94 

VAH05 1.72 1.95 1.42 2.07 

VAH06 1.48 2.20 1.22 0.70 

VAH07 1.48 1.71 1.11 1.67 

VAH09 0.98 1.15 0.75 1.12 

VAH10 1.36 1.75 1.10 1.18 

VAH12 1.61 1.89 1.35 1.46 

VAH13 1.90 2.19 1.69 2.52 

VAH15 0.88 0.95 0.69 0.36 

VAH16 1.01 1.08 0.81 0.41 

VAH17 0.51 0.63 0.38 0.36 

VAH20 1.08 1.46 0.91 1.13 

VAH22 2.05 2.43 1.75 0.87 

VAH23 2.51 2.74 2.28 2.76 

VAH24 0.48 0.66 0.38 0.23 

VAH25 0.81 0.92 0.64 0.43 

VAH27 0.70 0.90 0.56 0.60 

VAH28 0.81 0.99 0.61 0.44 

VAH30 2.65 2.95 2.35 3.49 

ALL 1.35 1.61 1.15 1.25 

Fig. 4. The estimated distribution of the SOH for VAH09, at the 1st (left figure) and 9th (right figure) capacity test. 

4. Predictive maintenance planning for eVTOL batteries integrating probabilistic SOH prognostics 

4.1. Modelling the maintenance planning of batteries by integrating probabilistic SOH prognostics 

We consider the case of having estimates of the distribution of the battery SOH at the end of every mission 
(cycle). Based on these estimates, at the end of every cycle we are interested in determining whether the battery 
should be replaced or whether this decision should be postponed for the next mission. We assume that a too early 
replacement is costly due to the wasted life of the battery, and due to maintenance costs for battery replacement. 
At the same time, an unscheduled battery replacement due to an inoperable battery is very costly, and possess 
safety risks. We say that a battery is inoperable if the SOH of this battery is below a threshold .  

Most existing studies define the End-of-Life (EOL) of batteries as the first moment the capacity of the battery 
is below a threshold of 80% of the nominal battery capacity (Severson, et al., 2019), (Yang, Wang, Xu, Huang, & 
Tsui, 2020), (Zhang, Xiong, He, & Pecht, 2018), i.e., . To the best of our knowledge, thresholds for the 
EOL of eVTOL batteries have not been formally established. Compared to batteries for automotives, we expect 



 

that more conservative safety margins will be applied for eVTOL batteries. In preliminary studies on eVTOL 
batteries such as (Alba-Maestre, Prud'homme van Reine, Sinnige, & Castro, 2021), (Mitici, Hennink, Pavel, & 
Dong, 2023)  a conservative EOL threshold of 85% of a nominal battery capacity has been considered. Following 
(Alba-Maestre, Prud'homme van Reine, Sinnige, & Castro, 2021) (Mitici, Hennink, Pavel, & Dong, 2023), in this 
paper we also consider an EOL threshold of  of the initially measured battery capacity. Even so, VAH07 
and VAH23 do not reach the threshold of  even at the end of their last missions. Due to this reason, we 
do not consider VAH07 and VAH23 for maintenance planning. 

For battery replacement planning, given a current capacity test , we consider the following costs. In case the 
decision is to replace the battery at the end of current capacity test , then a cost  for a preventive, 
scheduled battery replacement is incurred, where 

, 

with  a fixed cost of battery replacement, . Here, early scheduled battery replacements (wasted life of the 
battery) lead to high maintenance costs. Otherwise, the decision to replace the battery is postponed for the next 
capacity test, with an associated cost of having to perform an unscheduled battery replacement due to this battery 
being inoperable, i.e., we assume the following cost for corrective maintenance: 

, 

with  the cost of performing an unscheduled replacement, and  the probability that the 
SOH estimated at capacity test  (using the approach in Section 3) is below an EOL threshold , where  
Here,  quantifies the risk of having an inoperable battery in the upcoming capacity test. We assume 
that . By evaluating  and  at the end of capacity test , a decision is 
made of whether to replace the battery or postpose the decision for next mission.  

4.2. Numerical results  maintenance planning of eVTOL batteries integrating probabilistic SOH 
prognostics 

Table 3: Maintenance planning for eVTOL batteries, where  is the last capacity test when the decision is Not to 
replace the battery, i.e., the estimated probability at capacity test   that the SOH of 
the battery is below the threshold ,  is the first capacity test when the decision is to Replace the battery, 

 i.e., the estimated probability at capacity test   that the SOH of the battery is below 
the threshold . shows an optimal moment (capacity tests) to replace the battery, based on the estimated 
distribution of the SOH at the capacity tests. Here, we consider a cost for battery replacement  and a cost 

 for an unscheduled battery replacement. The results show a switch in the estimated 
 between the last capacity test  when no battery replacement is planned, and the first capacity test  when 

a battery replacements is recommended. 

Table 3: Maintenance planning for eVTOL batteries, where  is the last capacity test when the decision is Not to replace the battery, 
i.e., the estimated probability at capacity test   that the SOH of the battery is below the threshold ,  

is the first capacity test when the decision is to Replace the battery,  i.e., the estimated probability at capacity test 
  that the SOH of the battery is below the threshold . 

VAH# VAH01 VAH01 VAH05 VAH06 VAH09 VAH10 VAH12 VAH13 VAH15 

 8 8 13 10 17 10 11 11 9 
 0.044 0.003 0.075 0.008 0.027 0.066 0.009 0.002 0.001 

 9 9 14 11 18 11 12 12 10 
 0.403 0.902 0.881 0.576 0.750 0.515 0.135 0.135 0.928 

 
VAH# VAH16 VAH17 VAH20 VAH22 VAH24 VAH25 VAH27 VAH28 VAH30 

 7 12 10 8 11 9 7 10 11 
 0.001 0.007 0.057 0.035 0.078 0.016 0.066 0.026 0.014 

 8 13 11 9 12 10 8 11 12 
 0.557 0.905 0.994 0.483 0.702 0.971 0.967 0.241 0.237 

5. Conclusions 

This paper considers the health monitoring and predictive maintenance planning of batteries for electric vertical 
take-off and landing (eVTOL) aircraft. The eVTOLs are subject to realistic mission profile, during which the 
health of the battery is continuously monitored using measurements related to the battery charge and discharge 



 

protocols, the temperature at which the batteries are exposed to, and the eVTOL flight characteristics (e.g., the 
cruise duration, the power during take-off, cruise and landing). Based on these measurements, features are 

-of-Health. Using the Shapley value, it is shown that the 
(variance, minimum) of the voltage during take-off and the duration of the CC and CV phases have the highest 
importance for the SOH estimation. A Convolutional Neural Network with Monte Carlo dropout is employed to 
estimate the distribution of the SOH of the batteries, i.e., probabilistic SOH prognostics. These prognostics are 
updated periodically, after every capacity test. The results show that the obtained SOH prognostics are accurate, 
with the Continuous Ranking Probability Score (CRPS) metric indicating that the estimated SOH distribution is 
well centered around the true SOH. These probabilistic SOH prognostics are further employed for the maintenance 
planning of the batteries. Specifically, we determine an optimal time for battery replacement by trading off between 
the cost of unexpected battery inoperability due to exceeding an End-of-Life threshold, and the cost of replacing 
the battery early, thus wasting the useful life of the battery. Overall, the paper provides an end-to-end predictive 
maintenance planning framework, starting from actual measurements obtained by a continuous monitoring of the 
battery and the mission profiles, to the development of SOH prognostics which are updated periodically, to the 

 
As future work, we aim to extend our analysis to the development of Remaining-Useful-Life prognostics and 

to integrated these prognostics into maintenance planning frameworks. For maintenance, we plan to extend the 
current decision model to consider battery inventory constraints and the availability of slots for maintenance. 
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