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Abstract 

Reliability analysis of real-world infrastructure systems such as communication networks, power grids, and supply chain 
networks poses a challenging computational problem. These systems can be modeled as Multistate Flow Networks (MFN) 
where components have multiple capacity states between fully operational and failed states. Evaluating the reliability of MFNs 
is NP-hard as the network size increases. In this study, we propose a novel pre-ordering minimal paths set approach before 
applying it to two well-known recursive sum of disjoint product algorithms available in the literature. We have applied our 
proposed method to a benchmark network to validate the robustness and correctness of our approach. Additionally, to test the 
scalability of our algorithm, we applied it to large networks. Our method significantly reduce the number of mathematical 
operations for the well-known reliability evaluation methods by 39% and 45%, respectively 
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1. Introduction 

Critical infrastructure systems such as transportation and logistics (Wu et al., 2008), power transmission 
systems (Y.-K. Lin & Huang, 2014), and telecommunication networks (Y.-K. Lin & Huang, 2014) serve as the 
backbone of modern society. Modelling them as flow networks allows for analyzing the efficient movement of 
resources, goods, or data from one node to another in these complex interconnected systems. However, in reality, 
the components of such networks can fail randomly, leading to disrupted flows. For example, a software bug 
triggered an outage in Gmail in 2020, disrupting global connectivity and workflows for millions of end users. 
Severe weather events have been responsible for cascading failures in electrical power transmission networks, 
leading to massive blackouts. A fire incident halted production at a manufacturing facility in Ericsson in 2022, 
affecting supply chain networks worldwide. An error during a network device replacement caused an AWS system 
failure in 2021, disrupting connectivity and operations for thousands of online platforms and smart devices 
worldwide. A botched network software update in 2022 by Rogers Telecommunications caused widespread 
cellular, Wi-Fi, and landline service disruptions, crippling point-of-sale devices, ATMs, smart city infrastructure, 
emergency services, and more throughout Canada. Grounding of the massive container ship Ever Given in 2021 
completely blocked maritime traffic in the Suez Canal for six days, disrupting critical global shipping networks 
and inducing cascading road freight reliability issues by delaying thousands of vehicles and goods deliveries. These 
real-world examples illustrate that reliability analysis is critical across interconnected networks to ensure resilience 
against disruptions. Multistate flow network models are often used to analyze reliability by modelling components 
with probabilistic degraded capacities . However, as the network size grows, reliability 
analysis becomes computationally intractable, placing it within the realm of NP-hard problems. 

Our research focuses on a two-terminal multistate reliability metric that defines the likelihood that a multistate 
flow network can facilitate a required demand flow between a specified source and a destination node while 
considering degraded component capacities arising due to failures. The objective of this study is to develop an 
algorithm for the reliability evaluation of multistate flow networks that is more computationally efficient than the 
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current Sum of Disjoint Products (SDP) methods (Datta & Goyal, 2017, 2019; Zuo et al., 2007a). This paper 
introduces a new path set-based ordering approach to advance the state-of-the-art. The paper is structured as 
follows. Section 2 provides a background on reliability evaluation techniques for multistate flow networks. 
Building on relevant literature, Section 3 establishes the preliminary modelling foundations. The methodology 
section, Section 4, presents the proposed SDP algorithm in detail, including an illustrative example. Rigorous 
computational experiments on test networks are discussed in Section 5, quantitatively demonstrating the significant 
efficiency improvements our proposed method offers. Section 6 summarizes the conclusions and discusses 
directions for further enhancing the model as part of future work.  

2. Related Literature 

Network reliability evaluation has been an important research area for several decades. Earlier works focused 
on binary-state networks where components were either functioning or failed. Over the years, researchers have 
proposed various algorithms for finding minimal paths and cuts to calculate binary network reliability. Some 

-Warshall algorithm, and the maximum flow algorithm 
(Dijkstra, 2022; Floyd, 1962; Warshall, 1962). 

However, many real-world systems have components with multiple performance levels between perfect 
functioning and complete failure. Hence, the calculation of two-terminal reliability for multistate networks is an 
important problem that has received significant research attention. As discussed, two-terminal reliability at demand 
level  (denoted as ) can be exactly evaluated using methods like Inclusion-Exclusion if all -minimal paths 
( -MPs) are identified (W. C. Yeh, 2005). 

Efficient identification of minimum path sets that can satisfy a specified demand level plays a pivotal role in 
the reliability analysis of multistate flow networks. Early works in this domain were limited to binary systems until 
Lin et al. proposed an efficient algorithm to identify all minimum path sets satisfying a particular demand (J. Lin 
et al., 1995). Their approach yielded fewer d-MP enumerations, especially for non-series-parallel networks, 
compared to the work proposed by (Janan, 1985). This linear programming model formed the foundation for many 
follow-up studies on mapping minimum path sets (Forghani-elahabad & Bonani, 2017; Y.-K. Lin, 2001; W.-C. 
Yeh, 2002). For example, Lin (Y.-K. Lin, 2001) adapted this to handle unreliable nodes and links. Alternatively, 
Yeh (W.-C. Yeh, 2002) developed an enhancement using cycle-checking to verify each potential solution's 
feasibility as a valid d-MP. Beyond these two models, researchers have developed approximate and specialized 
algorithms. Satitsatian and Kapur proposed an approximation using minimal improvement paths (Satitsatian & 
Kapur, 2006). Ramirez-Marquez et al. identified potential -MPs based on information sharing between selected 
edges (Ramirez-Marquez et al., 2006). Bai et al. and Yeh focused on finding d-MPs for all possible demands (Bai 
et al., 2015; W.-C. Yeh, 2018). 

Once the - (Aggarwal et al., 1975) introduced 
single variable inversion (SVI) for binary networks. Abraham (Abraham, 1979) 
approach using Boolean algebra and path ordering. Locks (Locks, 1987) 
by alphanumeric ordering of paths and disjoint terms, improving efficiency. For multistate networks, Zuo et al. 
proposed the recursive SDP algorithm (Zuo et al., 2007), while Yeh (W.-C. Yeh, 2015) introduced an improved 
SDP using simplification to enhance efficiency. Datta et al. proposed an improved SDP algorithm where they have 
introduced three new rules for identifying redundant -MPs, checking for disjoint -MPs and disjointing non-
disjoint -MPs (Datta & Goyal, 2023). 

3. Preliminaries 

Consider a multistate network denoted by  with a source node  and a destination node , where 
 is the set of nodes,  is the set of arc/edges and  is the 

set of maximal capacity vector with  being the maximal capacity for  for . A state vector 
 is the current capacity (i.e., state) of each network component  defined by  with non-negative 

integer values ranging from  to . Such a network  is considered to satisfy the following assumptions further: 
 The flow within the network  adheres to the flow-conservation principle, i.e., the total flow in and out of a 

node is equal except for the source and the destination node. 
 All demands are exclusively transferred from the source node  to the destination node . 
 The source and the destination node do not fail, i.e., they are perfectly reliable. 
 The capacities of distinct arcs and nodes exhibit statistical independence. 



 

 Each arc and node capacity (excluding the source and destination) is a random variable with integer values 
distributed according to a specified discrete probability distribution. 

3.1. Notations 

                   Demand from source to destination node 
               Source node, destination node 
       A Multistate flow network with  is the set of nodes & E  

being the set of edges 
                Maximal capacity vector where   network 

components. 
 Capacity notation for all network components 
 Minimal path for i  
 Maximal capacity state of a component  
 The maximal capacity of a path is equal to the minimum of the capacities of its components. 
 Reliability of a network for demand  
 Set of minimal -MPs 
 Set of minimal -MPs after ordering 
 Set of feasible flow vectors for  
 Current capacity state of a component 
 Number of -MPs 

3.2. Acronyms 

MFN Multistate flow network 
SDP Sum of disjoint products 

RSDP Recursive sum of disjoint products 
iSDP Improved sum of disjoint products 

MP  Minimal path 
- MP - Minimal path 
GCF Greatest common factors 

DP Disjoint product 
 
Lemma1.   is the set of d-MP/ lower boundary points for demand . 
Proof: Suppose   with , but it is not a lower boundary point for . This implies the existence 
of a point  such that  and . Now, since , we must also have  (  and  is 
a boundary point). However, this contradicts the assumption that  is a lower boundary point because there exists 
a  with a higher function value, , and  is still in   . Hence,  must be a lower boundary point for 

. Conversely, let us assume  is a lower boundary point for , i.e.,  but . It implies that there 
exists a point  such that . Now, if  is indeed a lower boundary point for , we must have  
because if , it would contradict the definition of  as a lower boundary point. However, we assumed 

, which means . So, we have , which contradicts the assumption that  
is a lower boundary point for . Therefore, it must be the case that . 

Theorem 1. Network reliability from the disjointed set of DPs can be calculated as given in Eq. (1). 

  (1) 

4. Proposed Approach 

Let   be the minimal path sets from source to destination obtained by applying the path generation 
algorithm proposed by Chaturvedi & Mishra (Chaturvedi & Misra, 2002). Here, we have introduced a novel 
ordering technique for the -MPs. Suppose we have three -MPs as ,  and 

. Each of the component  for all the d-MPs to have a maximum capacity . We will order 
the d-MPs in a descending order starting from the MP, which can cover the maximum number of component 
capacity states starting from the current component capacity state .  

The proposed ordering method prioritizes generating lower-order path sets before higher-order ones. For path 
sets of the same cardinality, priority is given to the path sets that share more common capacity states with 



 

previously generated sets. This ordering allows earlier elimination of overlapping states between path sets. 
Disjointing lower order sets first removes more shared capacity states per operation than disjointing with a higher 
order path set later. 

If a higher order path set is disjointed with a lower order path set, fewer shared states are eliminated per 
operation since the higher order set contains a smaller number of shared capacity states between them. Delaying 
the removal of overlapping states increases the overall computational burden for reliability calculation. 

For example, the capacity state of the components for   ranges from
 thus having a total number of 15 component capacity states. Similarly,  will have 

19 capacity states and  will have 9 capacity states to cover all the components starting from their current state. 
After ordering the path sets . 
 

Algorithm 1: Ordering minimal path sets 
Input: Path set 
Output: Ordered path set  
STEP 1: number of components 
STEP 2:         /* Maximum capacity values for all components in  */ 
STEP 3:    /* This step calculates the no. of capacity states each component    can 

attain     starting from its current state */    
STEP 4: /* Calculates the total no. of capacity states for all the components    

in a -MP  */ 

path sets starting from the path set having highest number of component capacity state  
STEP 6: FOR  

         
             

     /* Order the path sets in descending order based on the index value obtained   in the previous step*/  
 

4.1. System Reliability Evaluation 

This section illustrates the steps in generating minimal path sets to the final reliability evaluation using RSDP 
(Zuo et al., 2007)  
Step 1: Obtaining feasible and valid flows from minimal paths. 

The feasible flow vectors  are formed by allocating portions of the total demand  to the 
minimal paths  such that: 
 The flow allocated to each path   for  is nonnegative. 
 The sum of flows allocated to all paths , where  is the flow allocated to the path  

Several feasible flow vectors share common capacity states among their components, rendering them unable to 
accommodate the demand simultaneously. For example, a  having four MPs 
carrying a total demand of 7 units. Suppose a component  is common to both minimal paths  and  and the 
maximal capacity of the component  is 4 units, then  is not a feasible flow vector. 
We retain only the valid flow vectors from the set of feasible flow vectors, discarding infeasible ones. 
Step 2: Transform each valid flow vector into boundary flow vectors. 

The boundary flow vector corresponding to the valid flow vector is the component capacity state in which 
exactly the allocated demands of all the paths in the valid flow can pass from the source node  to destination 
node . The component's capacity states and probabilities are the key elements to evaluate the network reliability; 
therefore, valid flow vectors are converted into boundary flow vectors.  
Step 3: Transform boundary flow vectors into lower boundary flow vectors or d-MPs. 

Obtain the set of lower boundary flow vectors or -MPs using Lemma 1. 
Step 4: Ordering -MPs 

Order the -MPs using Algorithm 1. 
Step 5: Evaluate point reliability from ordered -MPs 

We calculate reliability by evaluating the probability of the union of events where the state vector is greater 
than or equal to at least one of the -MPs that have been identified. The final reliability expression 
can be formulated as given in Eq. (1). 



 

4.2. An Illustrative Example 

To illustrate the MFN distribution algorithm, we employ a simple supply chain network, as depicted in Figure 
1, taken from relevant literature. This network comprises one supplier , two transfer centers  and one 
market  with six distinct routes . To reduce the calculation burden of the RSDP algorithm, we use the 
cumulative probability of the capacity states of different routes, as given in Table 1. The supervisor would like to 
know the reliability of the MFN to pass  units of demand/goods simultaneously from supplier  to market  

.  
 

 

Fig. 1. A benchmark supply chain network. 

                      Table 1. The Cumulative Probabilities of component capacities in Fig. 1. 

Component         

Capacity 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Capacity 1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Capacity 2 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 

Capacity 3 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96 

Capacity 4 0.90 0.90 0.90 0.90 0.90 0.90 0.94 0.94 

Capacity 5       0.92 0.92 

Capacity 6       0.90 0.90 

 
The minimal path sets of the network between the source node  and the destination node , as determined 

by the algorithm (Chaturvedi & Misra, 2002) are listed in Table 2. There exist four minimal paths: , , , and 
. Let  and  be  and Path  comprises components ,  ,  and with maximum capacities 

of 4, 6, 4, 6, and 4, respectively. Hence, the maximum demand that  can accommodate is the minimum among 
{4, 6, 4, 6, 4}, which equals 4 units. Similarly, each of the minimal paths ,  and  can transport a maximum 
of 4 units of demand from node  to node . 

Table 2. Minimal path sets for the network in Fig. 1. 

Path Number Path sets Max. Path capacity 

  4 

  4 

  4 

  4 

 
Step 1: Obtaining Feasible and Valid Feasible Flows from Minimal Paths 

After identifying the minimal paths, we generate 80 feasible flow vectors. From these 80 feasible flow vectors, 
we retain only the valid ones and discard those that are not feasible. The valid flow vectors are presented in Table 
3. 



 

Table 3. Valid flow vectors obtained from minimal paths. 

Valid Flows 
vs Paths 

    Valid Flows 
vs Paths 

    

 1 1 2 3  2 3 1 1 

 1 1 3 2  3 2 1 1 

 1 2 2 2  3 3 0 1 

 2 1 2 2  3 3 1 0 

 2 2 1 2  3 4 0 0 

 2 2 2 1  4 3 0 0 

Step 2: Transform each valid flow vector into boundary flow vectors. 
After obtaining the valid flow vectors, we convert them into boundary flow vectors, as given in Table 4, 

representing the current state of all the components.  

Table 4. Valid flow vectors obtained from minimal paths. 

 Component capacities  Component Capacities 

                

 4 3 3 2 3 4 6 6  4 4 1 1 3 3 4 5 

 3 4 2 3 4 3 6 6  3 3 1 1 4 4 5 4 

 4 4 2 2 3 3 5 6  4 3 1 0 3 4 4 4 

 3 3 2 2 4 4 6 5  3 4 0 1 4 3 4 4 

 4 3 2 1 3 4 5 5  4 4 0 0 3 3 3 4 

 3 4 1 2 4 3 5 5  3 3 0 0 4 4 4 3 

Step 3: Transform each valid flow vector into boundary flow vectors. 
We obtain the set of lower boundary flow vectors or -MPs listed in Table 5 using Lemma 1. 

Table 5. Lower boundary flow vectors/ -MPs. 

 Component Capacities 

        

 4 3 1 0 3 4 4 4 

 3 4 0 1 4 3 4 4 

 4 4 0 0 3 3 3 4 

 3 3 0 0 4 4 4 3 

 
Step 4: Ordering -MPs 

After obtaining the lower boundary flow vectors, we order them using Algorithm 1. The ordered set of -MPs 
are as follows: 

  

Step 5: Evaluate point reliability from ordered -MPs 
In this step, we will assess the point reliability for the network depicted in Figure 1 using the RSDP algorithm 

as stated in Theorem 1 using the cumulative probabilities of components given in Table 1, as follows: 

 for a 7-MP  = 0.7431667542 

5. Results and Discussions 

RSDP (Zuo et al., 2007) stands out as the most widely used and straightforward sum of disjoint products 
algorithm for evaluating the reliability of multistate flow networks. Yeh simplified the RSDP algorithm by 
leveraging the Greatest Common Factor (GCF) and Property 9 (W.-C. Yeh, 2015) to reduce the multiplications 
required in the reliability evaluation process. We will compare RSDP and iSDP with our proposed method, which 
involves ordering path sets, to assess the degree of improvement our algorithm offers. To ensure independence 



 

from specific computer hardware or software, we will quantify the total number of summations and multiplications 
needed to compute the reliability for each disjoint product. The total number multiplications to calculate  with 
and without ordering path sets for RSDP and iSDP is listed in Table 6.  

Table 6. Number of calculations to calculate  

SDP Method Without path set ordering Proposed (With path set ordering) 

RSDP 105 77 

ISDP 64 24 

 
As the number of -MPs increases the computational power required to calculate reliability grows 

exponentially resulting to NP-hard problem. In order to test the practicability and efficiency of our proposed 
method, we generate a dataset containing 400 MPs. All models were implemented using MATLAB and executed 
on a computer equipped with an INTEL(R) Core (TM) i5-7500 CPU running at 3.40GHz, with 4 GB of RAM. 
Table 7 lists the total number of calculations required to evaluate the point reliability for the given set of MPs 
without path set ordering, and our proposed methodology (with path set ordering). On average, our proposed 
methodology of ordering the path sets results in a 39% decrease in the number of multiplications for RSDP and a 
45% decrease in the number of multiplications for iSDP. However, there is only a 16% decrease in the summations. 
Figure 2 and Figure 3 show the computational time required to calculate reliability using sets of d-MPs. It is 
observed that the time required to calculate reliability for a set of 400 -MPs using RSDP and iSDP is 12.43 
seconds and 7.11 seconds, respectively. Using our proposed methodology, we can calculate reliability for the same 
400 MP set in 6.81 seconds with RSDP and 4.78 seconds with iSDP. Thus, our proposed methodology reduces the 
computational effort for reliability evaluation by around 50% compared to standard RSDP and iSDP approaches. 

Table 7. Number of calculations without path set ordering and with path set ordering. 

 

-MPs 

Without path set ordering Proposed (with path set ordering) 

No. of summations No. of multiplications No. of summations No. of multiplications 

RSDP/ ISDP RSDP ISDP RSDP/ ISDP RSDP ISDP 

40 1137 7138 5769 1042 5722 3967 

80 4472 25487 15121 3837 14857 8035 

120 10287 58871 33652 8355 25869 14919 

160 19389 86255 52449 15157 48645 22444 

200 28033 145755 82453 22858 59317 24736 

240 38686 179420 107863 34194 116018 40255 

280 51519 224797 135865 47193 154419 97019 

320 66180 274427 177672 56301 197659 104730 

360 72370 321657 189762 59169 205629 131383 

400 100042 366305 211576 79981 235714 154217 

 

 

Fig. 2. Computational time for RSDP vs RSDP ordered. 
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Fig. 3. Computational time for iSDP vs iSDP ordered. 

6. Conclusion and future direction 

Reliability evaluation of networks is critical for infrastructure systems such as communication networks, power 
grids, and supply chains. As these networks grow in size and complexity, efficiently analyzing their reliability 
becomes increasingly important. In this work, we have proposed a novel method of pre-ordering minimal paths 
sets prior to applying benchmark reliability evaluation algorithms like RSDP and iSDP. Our results demonstrate 
that this pre-processing step can significantly reduce the computational effort required by these algorithms. By 
improving the scalability of reliability analysis, our method enables more accurate and timely evaluation of large 
multistate flow networks. This has important implications for monitoring and maintaining critical infrastructure 
systems. The reduced computational burden also facilitates more frequent assessment of network reliability and 
probabilistic failure analysis. In conclusion, pre-ordering of minimal paths sets is an effective strategy for 
enhancing the capabilities of standard reliability evaluation techniques.  

While this work has focused on efficient two-terminal reliability evaluation, real-world networks often involve 
multiple source and destination nodes. This leads to the multi-terminal reliability problem, which warrants further 
research. Our proposed approach of pre-ordering minimal paths sets could be extended to analyze multi-terminal 
reliability. Additionally, many networks support multi-commodity flows between various source-destination pairs. 
Incorporating such multi-commodity flows into the reliability analysis introduces further complexity. As future 
work, the scalability and computational gains of our proposed method could be assessed in the context of multi-
terminal, multi-commodity reliability evaluation. 
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