
 

Advances in Reliability, Safety and Security, Part 6  -Mut (eds.)  
Association, Gdynia, ISBN 978-83-68136-18-0 (printed), ISBN 978-83-68136-05-0 (electronic)

 
 

 

Risk Informed Operational Planning Of Power Transmission 
Grids: Overview Of Recent Developments 

Roberto Rocchettaa, Lorenzo Nespolia, Vasco Medicia,  
 Davood Raoofsheibanic, Blazhe Gjorgievb, Giovanni Sansavinib 

aSUPSI, DACD-ISAAC, Energy systems sector, Mendrisio, Switzerland   
bETH, Reliability and Risk Engineering Laboratory, Zuich, Switzerland 

cSWISSGRID, Operational Planning Team, Switzerland 
 

Abstract 

Operational planning of power transmission grids is a complex task which involves a sequence of decision-making problems 
on different time horizons and over varying degrees of risk and uncertainty. Although there are many studies on power grid 
operational planning, there is a lack of specific research on recent advancements in Probabilistic Risk Assessment (PRA) and 
uncertainty modelling options to support this decision-making process. This survey aims to bridge this gap by presenting an 
overview of recent developments in PRA and risk-informed operational planning for power transmission systems with a 
specific focus on outage and maintenance scheduling problems. This work highlights the advantages of PRA over deterministic 
method especially when combined with probabilistic forecasters, estimation methods for low-probability events, and high-
fidelity simulators. A discussion of major challenges and current limitations of PRA methods is also proposed, and a prospective 
view of future research directions is introduced. Advanced PRA approaches have the potential to improve the sustainability 
and resilience of future power grids by enabling informed risk-informed operational scheduling for both short-term and long-
term planning horizons. 
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1. Introduction 

Operational planning of power transmission systems is a fundamental discipline whose main scope is 
identifying operational decisions that ensure the stability, quality, and profitability of the energy transmission 
service. Operational planning decisions are taken over different planning horizons and determine the downtime of 
components and subsystems which need upgrading, maintenance, or refurbishment, like transmission lines, 
substations, and power plants. Traditionally, deterministic security-constrained optimization methods prescribe 
outage schedules one year ahead and N-1 deterministic security constraints are applied to guarantee safe operations 
during scheduled downtimes (Zhang, 2022). Because grid operations change dynamically and system safety is 
paramount, the scheduled operational plans must be revised regularly.  

Emerging trends in power transmission grids are posing new challenges for traditional deterministic operational 
planning approaches, with the potential to undermine the safety of the grid. The growing integration of renewable 
energy sources, changes in loads driven by the electrification of mobility services, increasing frequency of extreme 
weather events potentially leading to unforeseen N-k failures and instability events (Wen, 2023), and the 
decentralization of the energy market are some of the recent challenges which are adding new risks and 
uncertainties in the grid operations. These new risk sources have pushed the power engineering community to 
develop advanced approaches incorporating online monitoring data into probabilistic and risk-informed 
operational planning strategies. See the recent works of (Metwaly, 2020), (Karmakar, 2020), and (Varbella, 2023) 
for examples of applications. Probabilistic risk assessment approaches and probabilistic operational planning 
strategies have gained particular attention in the last year as powerful tools to address these challenges (Vaiman, 
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2011, Ciapessoni,  2016, Liu, 2023). In contrast to deterministic planning approaches, PRA quantifies and 
distinguishes between the likelihood of occurrence of different scenarios and the severity of the system, thus 
allowing for informed decisions and better management of the available resources and identified hazards. In this 
work, we present a survey of latest trends and new developments concerning PRA and risk-informed approaches 
for the operational planning of power transmission grids. Specifically, we focus on robust methodologies to address 
uncertainty issues concerning future system states and novel approaches for the efficient estimation of low 
probabilities of rare failure events and simulation-based assessment of severity and consequences for these events. 
PRA approaches could enable informed decision-making under uncertainty and the integration of risk metrics and 
risk forecasters within short and mid-term planning pipelines could enhance the resilience, reliability, and 
sustainability of future grid operations. 

The remainder of this work is structured as follows: Section 2 introduces the operational planning and outage 
scheduling problem for power grids. Section 3 reviews PRA, severity scores, recent developments in rare event 
estimation, epistemic uncertainty quantification and extreme event modelling. Sections 4 and 5 close the paper 
with a brief discussion and recommendations for future research. 

2. Operational planning and outage scheduling problem   

Operational planning is a process that aims to maintain effective power delivery while ensuring system 
adequacy and operability under various scenarios. (Qiu, 2022) present a comprehensive review of power system 
scheduling problems and robust optimization approaches to deal with uncertainties. Four classes of operational 
planning problems are considered: Economic Dispatch (ED), Unit Commitment (UC), Power Coordination (PC) 
and Robust dispatch (RD) problems. Albeit broad and quite comprehensive, this review did not explicitly address 
the outage scheduling (OS) problem, also known as the maintenance scheduling problem, which is a fundamental 
task in transmission grid operational planning. 

The adequacy of a power grid defines the system's ability to supply enough energy and meet the aggregated 
electrical demand of the end-users (under both normal system states and planned failure scenarios). One of the 
main goals of an OS problem is to ensure that changes in the system adequacy and safety induced by planned 
contingency will remain within an acceptable level through the planning horizon. OS decisions, such as repairs, 
upgrading, refurbishment, and decommissioning of grid elements (Anders, 2003), can significantly impact power 
transport capacity and quality of power delivery. These outages are timely planned over a yearly horizon and later 
updated to meet requirements on mid-term (monthly) and short-term (daily and real-time) horizons. During this 
process, transmission system operators must forecast grid states and re-evaluate the feasibility of a planned outage 
if this could compromise security (Fu, 2007). Preventing future grid congestion, meeting dynamic grid stability 
criteria while minimising environmental impact and ensuring a positive cost-benefit ratio are some of the key 
principles driving operational planning strategies for future grids.  

The OS problem involves risks and uncertainties due to the complexity of predicting future grid states and 
undesirable consequences (potentially severe) of erroneous plans on the system's stability and security (Froger, 
2016). Despite the pivotal role that both risk and uncertainty play in this process, maintenance schedules are often 
defined by deterministic security-constrained optimization models in practical applications, which can result in 
sub-optimal solutions in terms of both operational cost and safety. Hence, research efforts have focused on 
developing robust PRA frameworks, like the early work of (Jiang, 2002) where an IMSS - Integrated Maintenance 
Selector and Scheduler, was introduced for a risk-informed selection model for refurbishment actions on bulk 
transmission equipment. This approach addressed some of the limitations of deterministic OS approaches by 
exploiting a cumulative long-term risk estimator, i.e., a risk index derived from the failure of various components 
and a Markovian probabilistic model for the failure probabilities. The authors concluded that risk-based procedures 
hold significant potential for better managing ageing assets. However, the prescription of an accurate probabilistic 
(Markov) model may require a large volume of data and/or extensive simulations, which are not always available 
or feasible in practice.  

Recently, (Dalal, 2019) introduced a chance-constrained approach for outage scheduling supported by machine 
learning (ML) surrogate models, i.e., proxies. The authors claim that the completely data-driven nature of this 
approach highlights a significant advancement in the field since their ML approach does not require a stochastic 
model and uses less unwarranted probabilistic assumptions. Although the risks and severities of different actions 
were not directly addressed by (Dalal, 2019), this shift towards data-driven methodologies marks a notable 
departure from traditional approaches, offering promising avenues for enhanced operational planning and PRA for 
power transmission systems. In a similar line of research, (Toubea, 2022) introduced an ML-assisted OS 
framework to support maintenance activities in power systems. ML models have been developed as surrogates to 
predict the outcome of contingency analysis and thus reduce computational time and alleviate tractability issues 



 

arising from the need to comply with operational security standards. The interested reader is reminded of the works 
of (Froger, 2016) and (Alimi, 2020) for a review of ML approaches supporting transient stability, voltage stability 
and power quality disturbance analyses and for a complete review of mathematical optimization frameworks for 
maintenance scheduling in the electricity industry. In the following sections, we provide an overview of 
deterministic security-constrained OS planning and discuss the challenges associated with moving from 
deterministic planning approaches to probabilistic risk-informed planning. 

2.1.  Deterministic security-constrained OS problem  

Consider a power grid comprising  components of which  require maintenance in a fixed planning 
horizon of length . The planning horizon is assumed to be composed of fixed cycles  and, for each 
 a subset of components can be taken out-of-service so that maintenance can be performed, e.g., by upgrading, 

repairing, or refurbishing the element. A maintenance policy  is defined as a sequence of maintenance actions 
 over the planning horizon, where  is the set of components that are 

maintained at the cycle , such that  if component  is disconnected and 0 otherwise. The objective of the 
OS problem is to find an optimal maintenance policy  such that:1) the total operational cost 
of the T-length cycle is minimized, 2) a cumulative risk score of the T-length cycle is minimized and 3) guarantees 
coverage of a minimum set of required maintenance actions while complying to budget and technical constraints 
on security and required downtimes. A simple security-constrained OS optimizer is given by: 

  (1) 

subject to budget and security constraints as follows: 

,   (2) 

  (3) 

  (4) 

is the operational cost of the grid to be minimized,  is the cost of maintenance constrained by a maximum 
budget,  defines security constraints (for instance line overflow limits) that must be always upheld 
and for all the single-component failures in a contingency set  and times  in the planning horizon. 
The last equality constraints ensure that the at least  maintenance cycles are allocated to the M components. See 
the work of (Maquirriain, 2023) for a heuristic solution of a general maintenance scheduling problem under the 
assumption of single-component maintenance at each cycle . This optimization problem is high-dimensional 
because  can be large and planning horizon extends up to one year. Moreover, because the conditions  are 
inherently uncertain and the security constraints only focus on a limited set of initiating events (single-component 
failures), this deterministic approach will likely fail to capture the full spectrum of potential failure modes and 
their interdependencies within the grid. Deterministic methods typically lack the ability to differentiate between 
the probabilities of different contingencies and all failures are treated equally, thereby neglecting valuable 
information on component reliability, as well as the different consequences and possible unwarranted outcomes 
for the system. This oversight can lead to suboptimal decision-making and inadequate resource allocation for risk 
mitigation and prevention. 

2.2. Risk-informed OS and operational planning 

In contrast to deterministic approaches, PRA offers a more comprehensive understanding of hazards and related 
uncertainties by integrating probabilistic modelling and severity evaluation techniques. PRA has gained attention 
among researchers in operational planning and optimization because offer a systematic framework for evaluating 
the likelihood and consequences of various failure scenarios. This represents a significant departure from 
deterministic methods, which often overlook crucial uncertainties related to future weather conditions and rare 
operational states and failures. Hence PRA could enable utilities and operators to systematically assess the 
probabilities and consequences of various scenarios, considering a broader range of initiating events, planned 

s 
operation and weather patterns, PRA can inform decision-makers with a more accurate view of the risk exposure 
and consequently, the decision-maker can prioritize risk mitigation efforts more effectively while enhancing grid 
resilience and sustainability. In the work of (Jiang, 2002), the authors tried to extend the OS problem by including 
probabilistic cumulative risk reduction indicators in the objective function. A formal definition of probabilistic 
risk and a discussion on strengths and limitations is presented next.  



 

3. Probabilistic Risk Assessment and risk definition 

Risk is traditionally defined as the combination of probability (or frequency) of disturbances and 
magnitude/severity of their consequences. The combination of the probability of hazardous power grid operational 
states and a vulnerability metric given the occurrence of the hazard.  A mathematical definition of dynamic risk 
indicator is given as follows (Rocchetta, 2020):  

  (5) 

where  denotes the operational risk at the next time  expressed as a function of the planned maintenance actions 
 and stochastic operational-environmental condition  which are distributed according to
  of system states.  is the conditional failure occurrence probability given for the scenario 

 and the OS policy and  are contingency events (disturbances) in a contingency set .  
 
This risk indicator in equation (5) overcomes the limitations of traditional deterministic approaches by explicitly 
accounting for the likelihood of unexpected failures, diverse environmental-operational conditions, as well as an 
indicator of the consequences and severity given by . Despite the many advantages, there are also several 
challenges that must be addressed in the computation for an effective and efficient computation of the risks 

 and transition from deterministic to a risk-informed operational planning approach.  
 
In particular, the following challenges are identified and discussed in the remainder of this work:  

 The contingency set  can encompass not only the unexpected loss of single components, denoted as, 
 but also be extended to include failure sequences (cascading events) and N-k contingencies 

(common cause failure), such that . However, the definition of representative set  is a 
difficult combinatorial problem. It may require evaluating the risks covered by failures within the set, 
relying on heuristics supported by expert opinion. 

 The severity score , implicitly defined in this work, can consist of a vector with multi-
dimensional indicators of social, environmental, economic, and systemic consequences of failures on the 
grid. Selection of appropriate score may be a problem-dependent task and must align with the objective 
of decision-making informed by the PRA. A brief overview of different severity indicators presented in 
section 3.1.  

 The severity assessment often requires simulation-based analysis of the grid response to the conditions 
 and power flow, transient stability, and cascading failure models have been developed to address this 

task. However, simulators can be computationally intensive to run, in turn leading to tractability issues 
especially if the set  is large and a standard Monte Carlo employed for the probabilistic integration. 
Surrogate models (emulators/proxies) have been specifically developed to address this challenge, see for 
instance, (Varbella, 2023) and (Rocchetta, 2020). 

 The estimation of ,  and domain  for the probabilistic integration can be a challenging 
task which require a large volume of contingency and operational data. ML-based forecasting tools can 
be developed to support these estimations; however, it is important to note that rare failure and operational 
scenarios have a small probability of occurrence, and data will be inevitably scarce thus limiting the 
efficacy of data-driven approaches.  

 Rare events are neglected by traditional approaches. However, these events may be non-negligible from 
a risk perspective due to the high severity score . Hybrid forecasting methods, which combine 
data with physics-based modeling of grid failures, along with advanced probabilistic samplers, could 
address this challenge. See for instance the works of, e.g., (Zio, 2008) and (Chan, 2023), and to section 
3.2.3 for a more detailed overview.  

 
Advanced PRA for risk-informed outage scheduling must account for the lack of information and failure data by 
combining available data with advanced forecasting tools for uncertainty quantification and high-fidelity 
simulators to reduce epistemic uncertainty and compensate for data scarcity. 

3.1. Severity scores and risk indicators 

Power grid risk indicators and can be categorized as follows (Che-Castaldo et al., 2021): I) Financial, II) 
Environmental, III) Systemic. Financial indicators assess the economic impact of potential risks on the power grid, 
including costs associated with equipment damage, downtime, and revenue loss. Environmental indicators 
evaluate the environmental impact of disturbances. These include severity scores like total CO2 emissions, habitat 



 

disruption, water contamination. Systemic operational risk indicators are perhaps the most widely investigated in 
the literature and focus system-specific indicators. A few examples of servery indicators which have been used for 
online PRA and for economic dispatch include overall severity scores, voltage deviations, frequency deviations, 
and other operational anomalies that could potentially compromise the quality of the power delivery and stability 
of the grid. For a comprehensive overview of topological vulnerability scores the interested reader is reminded to 
(Abedi et al., 2019). For a review of operational risks and resilience indicators the reader can refer to (Panteli, 
2017 and Rocchetta, 2019). 
 
Traditional operational planning for transmission grids often overlooks the potential impacts of extreme scenarios 
which, despite their historical rarity, can lead to significant disruptions in grid performance, resulting in high 
severity . In response to this challenge, various frameworks have been developed in the literature to 
evaluate the consequences of such rare events. These frameworks include modelling of weather-induced failures 
(Rocchetta, 2018) and extreme weather events (Lian, 2023), severity estimation of lighting-induced common cause 
failures using fragility models (Wang, 2023), cascading outages (Li, 2017), and transient instabilities (Sobbouhi, 
2021). On a similar line of research, (Guo, 2020) proposed a multi-state model for enhancing transmission system 
resilience against short-circuit faults caused by extreme weather events, highlighting the importance of proactive 
planning. (Kumar, 2021) introduced a novel framework for risk and resilience assessment of critical infrastructure 
towards climate change, emphasizing the need for adaptive strategies. (Quiring, 2014) analysed the impact and 
severity of tropical cyclones and related hazards, (Henneaux, 2015) proposed a two-level probabilistic risk 
assessment of cascading outages, whilst (Han et al. 2021) introduced an assessment framework for the evaluation 
of multi-meteorological disasters. These studies underscore the critical role of advanced modelling approaches in 
enhancing grid resilience against extreme events. (Hu et al, 2023) focused on risk-informed resilience planning of 
transmission systems against ice storms, demonstrating the necessity of incorporating extreme weather scenarios 
and dedicated modelling tools to model specific hazard sources and advance the planning processes. In (Li, 2017) 
the authors a multiregional, multi-industry interdependence model to quantify the short-term economic impact of 
power cascading failures. Recently, (Varbella, 2023) built upon the work of (Li, 2017) and developed a data-driven 
methodology for online estimation of the risk of cascading failures. Graph neural networks and ML-driven 
surrogates are the enabling technologies used to achieve online estimation capabilities.  

3.2. Uncertainty Quantification 

Uncertainty quantification (UQ) is indispensable for achieving effective PRA and informing operational planning 
and outage scheduling strategies. In the conceptual risk framework, UQ plays a crucial role in quantifying 
uncertainty and, where feasible, reducing it. It provides a means to estimate the probabilities  and  
as well as the epistemic uncertainty affecting these estimators. In the work of (Aien, 2016), a comprehensive 
review of UQ approaches for power system analyses is proposed and particular focus dedicated to decision-making 
problems. Modelling approaches are revised and classified in such as probabilistic, possibilistic, and generalized 
UQ methods, e.g., as for information gap decision theory and robust risk-informed optimization approaches. 
Similarly, the project (GARPUP, 2017) delved into computational models and UQ but with particular focus on 
applied PRA for transmission systems. Among the other targets, the project aimed to develop tools to predict the 
location, duration, and amount of power supply interruptions. This project specifically addressed different 
decision-making aspects for the transmission grid, encompassing power system operation, asset management, and 
system development. These two works, thoroughly discusses modelling approaches for decision-making under 
uncertainty in power grids. However, they also lack a precise categorization of uncertainty sources affecting  
and  and modelling approaches that are tailored to the mathematical definition of risk presented above. 
To facilitate a comprehensive analysis and future PRA developments, the work proposes a survey of the following 
methodological areas: (i) environmental-operational state forecasters; (ii) modelling of extreme weather 
conditions, common cause failures, and cascading outages; and (iii) quantification of epistemic uncertainty.  

3.2.1. Forecasters for environmental-operational states  
Accurate estimation of  is essential to estimate the risk in equation (5), thus ensuring effective PRA and risk-
informed operational planning. Forecasting tools can offer valuable support to address this challenge and several 
methods have been recently proposed, for instance, to predict the aggregated and nodal load demand and renewable 
energy generation (Nespoli et al., 2020), and for heterogeneous environmental conditions and weather-induced 
failures (Dokic et al., 2019). By integrating forecasting models, PRA approaches can anticipate future system 
conditions, enabling proactive risk management strategies and adaptation of operational planning decisions. The 
primary objective of forecasting models is to give precise predictions of key operational-environmental factors , 
hence facilitating risk estimation, risk-informed decision-making, and risk mitigation measures. Forecasters can 
be divided into deterministic and stochastic models (Xie, 2023) based on whether predictions for the future 



 

environmental-operational conditions are given as a point-expectation or as a distributional model such 
that , that is, the next operational conditions are distributed as a joint probability density function (PDF) 
of . Forecasting tools play a crucial role in supporting a model-based estimation of failure probabilities. These 
tools provide valuable insights into future environmental-operational conditions, essential inputs for assessing the 
likelihood of failure events. By leveraging forecasting models, analysts can enhance their understanding of system 
dynamics and uncertainties, enabling more accurate and informed estimations of failure probabilities and enhanced 
PRA (Zio E. 2018). For an overview of modelling approaches for representing the uncertainty in markets for 
operational planning and forecasting of renewable power systems see (Haugen, 2023) 

3.2.2. Simulation-based failure probability estimation  
 

Consider a classical definition of contingency probability: 

 (6)

where  is a failure event and  is vector uncertain operational-environmental conditions,  is the joint PDF, 
and  is the indicator function for the failure condition such that 1 if the failure event occurs and 0 
otherwise. Because the contingency probability is a multi-dimensional integral and is not tractable analytically, 
integration methods like MC are often used to estimate the failure probability by sampling  realizations of the 
uncertain factors from  and averaging . Evaluation of the indicator function for a failure 
condition requires a simulation-based evaluation of the 
system response to a scenario , e.g., by means of high-fidelity simulators combining power flows simulators of 
cascading failures (Gjorgiev, 2022), and/or transient instability models like (Umair, 2022) or (Sobbouhi, 2022). If 
the probability of failure is small or the system function  is numerically costly to evaluate, a crude MC 
integration becomes very time-consuming. Hence, efficient sampling strategies must be therefore considered to 
alleviate the computational burden. 

3.2.3. Efficient analysis of low-probability events 
 

This section provides a brief overview of rare-event estimation methods which are essential to achieve efficient 
assessment of low-probability, high-impact, events for PRA and risk-informed transmission grid planning. These 
methods encompass a range of statistical techniques, simulation-based approaches, and computational algorithms 
designed to efficiently estimate the likelihood of rare scenarios. The most widely applied approaches include 
Markov Chain Monte Carlo methods, Extreme value theory, and other advanced sampling methods like Subset 
Simulation (SuS), Importance Sampling (Cadini, 2017), and adaptive Monte Carlo methods (Chan, 2022). 
Advanced algorithms that integrate ML techniques have also been increasingly applied to tackle the rare-event 
estimation problem because of their efficacy in handling complex data structures and nonlinearities. A few 
representative examples of approaches applied in the power grid operational planning domain include adaptive 
SuS methods (Chan, 2022), Bayesian improved cross entropy models (Chan, 2023). Recently, methodological 
advancements for rare event simulation have been also proposed using ML, such as SuS for high dimensional 
spaces (Zuev, 2012 and Zuev, 2015), methods based on LSTM neural networks (Oh, 2021) and SuS combined 
with Hamiltonian networks (Thaler, 2024). Specifically for the SuS method (Zio, 2008, Hu, 2014), the key idea is 
to express a small failure probability as a product of larger conditional probabilities by introducing intermediate 
failure events.  Mathematically, the subset method converts the probability of a rare, like the probability of grid 
failure due to instability , into product of larger conditional probabilities,  where the probabilities  
are estimated sequentially from nested subsets of intermediate failure domains  The 
domain  is the target failure region whilst  are intermediate failure domains for the 
levels .  is the space of the uncertain parameters which could be reduced to  if an accurate 
predictor of the support domain for the uncertain parameters is provided. This type of advanced probabilistic 
analysis extends particularly well to the analysis of cascading failures. For instance, consider a black out event 
defined by the loss of  components in the grid. The failure components define a contingency set and 
the probability of this event happening is . This probability is unknown and very small in 
practice, making its efficient estimation difficult using traditional sampling methods. On the other hand, this event 
can be expressed as a sequence of events having larger failure probabilities, for instance, a of primary failure events 
with a single component failure  and the conditional failure probabilities of secondary events in the 
cascading sequence. This yields the following decomposition of the low-probability events in a sequence of larger 
conditional probabilities as follows, . Figure 1 
present a conceptual example of this probabilistic decomposition method.  
 



 

 
Fig. 1. An illustrated example of the SuS procedure for estimating the probability of low probability cascading failures. 

3.2.4. Epistemic uncertainty quantification 

When databases contain missing information or the database is small, the effect of epistemic uncertainty on the 
density  can be exceptionally large. Traditional probabilistic methods and forecasters may struggle to cope 
with imprecision; due to a limitation of classical probability theory which models epistemic uncertainty using 
probabilities. This can lead to overconfidence in th
operational risks and costs. In fact, the true PDF  is always unavailable in practice, because of finite data and 
information. Hence, model assumptions may be required and a probabilistic estimator of  will be inevitably 
affected by these assumptions. Generalized UQ methods overcome these difficulties and quantify the epistemic 
uncertainty in . Methods based on advanced UQ and statistical reasoning in ML have been proposed for this, see 
( , 2021) and (Rocchetta, 2023) for an overview of different approaches and (Liu, 2021) for a review 
of generalization for out-of-sample data and distributional shifts. However, only a limited number of works applied 
generalized UQ approaches to assess the robustness of PRA results for power grids. An imprecise probabilistic 
framework for risk assessment was proposed by (Rocchetta, 2020), and imprecision affecting vulnerability and 
severity assessment was investigated in (Rocchetta, 2018). Within this scope, fuzzy analytic methods for the risk 
assessment of transmission lines affected by multi-meteorological disasters have been also investigated in (Han, 
2021) and a scenario theoretic approach for economic dispatch with tuneable risk levels studied (Modarresi, 2018). 
To the best author's knowledge, the literature lacks an application of these advanced concepts to risk-informed 
optimization maintenance schedules of power transmission grids.  

4. Prospective on future research  

Probabilistic risk assessment (PRA) and risk-informed planning in power transmission systems represent a 
notable departure from conventional deterministic methods, providing a better understanding of risks, 
consequences of unforeseen failures, and operational-environmental uncertainties affecting the grid. Accurate 
PRA can provide a clearer view of issues related to future power grid instabilities, topological weaknesses, and 
consequences and likelihood of rare scenarios. Importantly, a risk-based identification of root cause events and 
low-probability/high-consequence failures can help to prevent and mitigate the effect of new instability events and 
cascading failures and provide better operational planning strategies. However, the adoption of PRA also 
introduces many challenges since the inclusion of probabilities and severity scores aggravates the computational 
cost of an already complex combinatorial optimization/planning problem. Specifically, technical challenges 
related to the efficient estimation of low-probability events (like cascading failures), lack of representative failure 
data, and computational tractability of high-fidelity simulators must be addressed. This work presented an 
overview of recent works and developments towards these directions. Novel machine learning approaches for 
forecasting, surrogate models, and efficient methods for the estimation of low-probability evens proved to hold 
high potential and have been recently explored to advance the PRA of power grids. Quantification of the epistemic 
uncertainty affecting planning strategies, stemming from the scarcity of rare failure data and model imprecision, 
and the development of a tractable risk-informed optimization model for operational scheduling are also crucial 



 

and require further investigation. Addressing these challenges mandates efficient estimation of low-probability 
events, rectifying deficiencies in failure data representation, and ensuring computational tractability in dynamic 
analysis using high-fidelity simulators. 

5. Discussion and preliminary conclusions 

This work reviewed some of the latest trends and developments with PRA and operation planning of power 
transmission grids, particularly focusing on computational challenges associated with probabilistic risk assessment 
methods and with the transition from deterministic outage scheduling approaches to probabilistic risk-informed 
models. Some of the most pressing issues have been highlighted and discussed, such as the estimation of rare 
events and extreme failure scenarios, the definition of probabilistic operational forecasters, efficient simulation-
based assessment of the different consequences of failures, and epistemic uncertainty quantification of the resulting 
risk scores. By addressing these challenges, researchers and practitioners could better understand risk and mitigate 
the risks associated with grid operation, ultimately enhancing the reliability and performance of outage scheduling 
actions.  
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