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Abstract 

 
direct and indirect losses that build up over time until the system completely recovers. In this paper, we focus on the dynamic 
resilience assessment during the recovery phase by modeling the fragility resulting from the multi-regional interdependencies 
in urban systems. The static and dynamic inoperability input-output model is adopted to assess the static and dynamic resilience 
under a fire accident that occurred in an oil refinery in the West region of Singapore. For the dynamic resilience assessment, 
the varying total output of the system during the recovery phase is adopted as the resilience indicator as it can serve as a 
consistent measure of the impact on different critical infrastructure systems. Moreover, we employ the input-output data and 
the region-specific initial disruptive data at the multi-regional level, which was not available before. With the help of the multi-
regional data, the impact of the fire accident is illustrated at a multi-regional level and then compared with the single-regional 
(national) level. The higher level of details in the results of the dynamic resilience assessment at a multi-regional level reveal 
a less extreme minimum total output and longer recovery time than the results at the national level. Moreover, the initially 
impacted manufacturing (MANUF) sector suffers the largest economic loss, followed by the others (OTHSV) sector in both 
multi-regional study and single-regional study, showing the relative vulnerabilities of the respective infrastructure systems in 
a high-density urban system. 
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1. Introduction 

There are an increasing number of catastrophic disasters and disruption events that impact urban systems (Lam 
and Tai, 2018). Moreover, urban systems are becoming denser due to greater provision of more and better critical 
infrastructure (CI) and the increasing number of job opportunities attracting more population into urban areas (Curt 
and Tacnet, 2018). Therefore, the CI is growing more interdependent in the current high-density urban systems 
under this rapid urbanization phenomenon. Furthermore, with the cascading effect caused by interdependencies, a 
relatively small disruption of one CI system may lead to significant disruptions in the whole urban system. Thus, 
one of the main requirements for designing resilient infrastructures is in comprehending the fragility caused by 
system interdependencies. 

The interdependencies among the CI systems can be categorized into geographic, physical, cyber, and logical 
interdependencies (Rinaldi et al., 2001). Some types of interdependencies (such as logical interdependencies) are 
quite difficult to identify or may not be apparent as the relevant data needed to quantify them are confidential or 
intangible. Thus, most methods of analysis such as network-based methods or agent-based methods can assess 
only one or two types of interdependencies and one or two CI systems (Ouyang, 2017). While they can assess 
individual CI systems in detailed spatial granularity, the overall relationships among the multiple different CI 
systems may be overlooked. Therefore, there is a need for a more complete model of the interdependencies among 
different CI systems, and this may be achieved through some economic models like the computable general 
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equilibrium methods and input-output (IO) methods (Kelly, 2015). They can assess different kinds of 
interdependencies among the CI systems, but only at large scales, such as at the provincial or city level. The IO 
model, for instance, is widely used in disaster analysis in infrastructure systems.  

The basic IO model can simulate only the static economic loss immediately after the disruption happens, but 
more can be done to develop a fuller picture of the resilience of the system. Firstly, it would be convenient to have 
a resilience indicator suitable for all CI. Secondly, the indicator fluctuates with time to represent the dynamic 
conditions after a disruption. Resilience indicators vary among different CI systems, such as the pump pressure 
level for a water supply system (Rehak et al., 2019). Consequently, the functionality or operability of each system 
is chosen to be the resilience indicator after the disruption happens. Santos (2006) and Santos and Haimes (2004) 
utilized the inoperability input-
to demand reductions through the interdependency analysis between different CI systems. Moreover, to simulate 
the systems' performance along with time, the dynamic form IIM was introduced by Santos (2006). Santos (2006) 
employed the multi-criteria evaluation analysis and dynamic IO analysis to describe the magnitudes of the 
monetary loss and forecast future impacts with the North American Industry Classification System (NAICS). 
Santos and Haimes (2004) employed the dynamic IIM (DIIM) to assess the economic loss during the different 
temporal frames of recovery simulated by different recovery rates. With the conclusion from the risk-impact 
analysis, the recovery priority for investigated sectors was obtained. However, these studies were only applied at 
the system level rather than the facility level, and could not consider the spatial distribution within each CI system. 

Due to the complexity of supply and demand activity within and among individual CI systems, the spatial 
distribution for each CI system plays a critical role in resilience analysis (Oliva et al., 2010). For the regional-level 
IO model, Hewings et al. (2001) and Irimoto et al. (2017) simulated the economic ripple effects of both 
international and interregional disruptions in different scenarios. Based on the existing models, Hewings et al. 
(2001) explored the income formation and output generation interdependence between inner-city communities and 
suburbs by dividing the Chicago metropolitan area into four subregions, identifying the strength of 
interdependence between regions with the interrelational income multiplier. Irimoto et al. (2017) focused only on 
the transport sector, highlighting the more vulnerable regions needing urgent disaster prevention by changing the 
input-output model's trade coefficients to simulate different scenarios. However, these studies could not 
incorporate the dynamic changes of the resilience indicator after the disruption happened.  

Recently, there have been attempts to downscale the DIIM from the system level to the facility level by 
incorporating the DIIM with the network analysis (Tatar et al., 2022; Yu et al., 2020). Tatar et al. (2022) introduced 
the Functional Dependency Network Analysis (FDNA) into DIIM, which simulated the relationships between 
feeder and receiver nodes through the Strength of Dependency (SOD) and Criticality of Dependency (COD) 
relationships, and these required much data about the relationships among various CI sectors and the facilities. 
Moreover, some research incorporated the DIIM with the regionalized IO tables (IOT) (Crowther and Haimes, 
2010; Yu et al., 2020). However, these studies are still at an early stage. This paper proposes a new way to 
downscale DIIM to smaller spatial granularity by incorporating multi-regional (MR) IOT, which can form a good 
starting point for some what-if and optimization studies for analyzing and enhancing the resilience of urban 
systems. 

Section 2 of this paper describes the methodologies for the IIM and DIIM in the static form and dynamic form 
at a multiple regions level. Section 3 describes the data acquisition and the disruption event chosen for the case 
study. Section 4 presents the results and discussion. Section 5 presents the concluding remarks. 

2. Methodologies  

The methodology is based on the IO model which is widely used for disruption analysis at the system level, 
and the MRIOT for downscaling the system level to smaller spatial granularity.  

2.1. Basic input-output (IO) model  

The IO model was based on the Leontief IO analysis, rooted in the IOT, which is the crucial foundation for 
various extensions and applications, focusing on assessing the interdependencies in an economy (Miller and Blair, 
2009). The economy can be categorized into multiple sectors, and each sector produces homogeneous products 
with a stable production structure after a disaster and throughout the recovery process. For the ease of data 

spatial and temporal influencers.  
The linkages between different sectors of the economy can be represented purely by the transaction flows, 

and serve as estimates of indirect and direct interdependencies. These transaction flows are the transactions 



 

among groups of industries (sectors) that consume goods and services (input) to produce other goods and 
services (outputs) with the assumption of constant returns to scale (Bierkandt et al., 2014).  

The transaction data always come from interindustry transaction IOT constructed by official statistical 
authorities. In an interindustry transactions table (as shown in Fig. 1), the rows describe the distribution of a 

my, and the columns represent the composition of inputs required by a 

to final markets for their output, such as personal consumption and sales to the federal government. The additional 
rows, labeled Value Added, account for the other (non-industrial) inputs to production, such as labor, depreciation 
of capital, indirect business taxes, and imports (Lin et al., 2017). 

 

 
Fig. 1. Input-Output Table (adapted from Miller and Blair, 2009). 

The basic Leontief IO model was formulated based on the transactions among industrial sectors. The total 
output of each sector work from the sales to other sectors and the final market, so the equation for the output and 
sales relationship for each sector is as follows: 

  (1) 

 : consists of , total output (production) of sector  
 : consists of , total final demand for the output of sector   
: consists of , industry sales by sector  to sector  

dimension as x) 
To assess the relationships between the total output of each sector and the corresponding industry sales by one 

sector to another sector, the technological coefficient was introduced. The input from each sector 
 

 
 (2) 

It is used for assessing interdependencies, representing the need for the output of sector  for producing a unit 
output of sector . They can be summarized in the matrix form, represented by A, as follows:  

 
 (3) 

Then, using the standard matrix algebra results for linear equations, the equation can be translated into the form 
below with an identity matrix : 

  (4) 

The  is known as the Leontief inverse or total requirements matrix, representing one unit change 
in final demand leading to the change in the total output. 



 

2.2. Inoperability input-output model (IIM) 

The inoperability input-output model (IIM) (Haimes and Jiang, 2001; Jiang and Haimes, 2004; Santos and 
Haimes, 2004) is a useful tool to assess the economic loss for an individual sector from a direct disruption. In the 
short run and under transient conditions, the equilibrium assumption may not always hold.  

The classical form of IIM is as follows: 
  (5) 

The vector  represents the degraded output as a proportion of original output for each sector and  the 
degraded final demand divided by original final demand, and  where  is the diagnoal form of sectoral 
output vector .  represents the normalized technical coefficient and  where   is the technical 
coefficients used in the basic input-output model and  from 
measuring the expected economic output without any disruption (Tatar et al., 2022). 

2.3. Dynamic inoperability input-output model (DIIM) 

For resilience assessment, how a system reacts to the disruption is also critical. It takes time for a system to 
respond, recover from and even adapt to a disruption. To assess the recovery of a multi-sectoral system, Haimes 
et al. (2005) proposed the dynamic IIM, which can be represented by the following: 

  (6) 

where   is defined as the recovery coefficients, which is also in the diagonal form with . 
Numerous methods and thoughts for economic analysis are employed in IIM (Akhtar and Santos, 2012; Aviso 

et al., 2015; MacKenzie et al., 2012; Santos et al., 2013; Setola et al., 2009; Yu et al., 2020), assuming that after a 
certain period, the infrastructure will be non-operational, leading to economic consequences which is the 
counterfactual of the Business As Usual scenario.  

2.3.1. Recovery coefficients  

The diagonal element  in  describes the ability of sector  to recover from imbalance in supply and demand 
induced by disruption, defined as follows: 

 
 (7) 

where  is the recovery time for sector  from an initial inoperability of  to a desired post-recovery inoperability 
 and  is the self-dependency element for sector  in  (Mandapaka and Lo, 2023). 

The actual recovery time  for each sector when they face different extents of disruption and inoperability 
levels is based on corresponding historical data which is scarce. Thus, the most adopted method to quantify  is a 
probability approach which assume that the time  for a sector to recover from  to  follows 
a PERT distribution, which is a version of Beta distribution. Then, the most likely recovery time  for each sector 
can be obtained, which is a function of , given by the following: 

 
 (8) 

2.3.2. Resilience indicator 

After knowing the evolution of the inoperability level, the resilience indicator for different sectors can be 
defined as the post-disruption economic output for each time step for all sectors. That is because for different 
sectors representing the different CI, the resilience indicator may be different (Shaker et al., 2019). To align the 
resilience indicators, the total output for each sector (CI) is chosen as the resilience indicator, and for the resilience 
of the whole urban system, the post-disruption economic output for each sector in each time step is the resilience 
at that time step. 

If the baseline annual output vector  is evenly distributed over 365 days, the inoperability vector  at time  
can be converted into post-disruption economic output  as follows: 

 
 (9) 



 

2.4. DIIM extensions 

The inoperability level for initial impacted sector should also be accounted for when obtaining the overall 
inoperability level, which is always represented by , representing the inoperability level caused by direct 
disruption. It is assumed that  is zero when some sectors in some regions are not impacted by the direct 
disruption, which usually follows the exponential functions or is modelled by actual data if available. The initial 
inoperability  is usually assumed equal to . 

For the DIIM for multiple regions scenario, some research focused on modifying the equations with adding 
interregional trading coefficient when the MRIOT and the regional-specific disruption data is not available. The 
original MRIIM and MRDIIM is based on the multi-regional IO model which needs the transactions among various 
selling regions and purchasing regions for each sector, known as interregional trading coefficients. Through the 
interregional trading coefficients, the single regional IOT can be disaggregated to MRIOT, and the region-specific 
final demand reduction is also obtained. However, the MRIOT is available in our study, and the original 
inoperability/final demand used in this paper is also region-specific inoperability/final demand which are already 
distributed appropriately to the region. Thus, the equation for MRIIM and MRDIIM used in our work is the same 
as the single regional IIM and DIIM. 

3. Five-region Singapore MRIOT and disruption description 

3.1. Five-region Singapore MRIOT 

Singapore is a sophisticated cosmopolitan city, with complex interdependencies among numerous CI sectors 

related activities that may intensify the cascading effects under any disruption. Thus, there is a need for Singapore 
to more thoroughly identify and quantify interdependencies and reveal its resilience under specific disruptions that 
may have a higher probability of occurrence in Singapore. Apart from that, Singapore is also a well-segmented 
city, which means individual sub-regions in Singapore play different roles. That is because the detailed location 
distribution of each CI system also impacts the interdependencies and resilience of Singapore.  Therefore, an 
MRIOT in smaller spatial granularity for Singapore is established to investigate the interdependencies in more 
detailed spatial scale and uncover the resilience for different regions within Singapore. 

The five regions in the MRIOT of Singapore is West, North, East, Northeast, and Central regions. Moreover, 
the sectors in MRIOT are aggregated from 116 sectors in the national IOT to 12 sectors, listed in Table 1. The 
MRIOT is derived from the Singapore national IOT in 2010 close to the point in time when the disruption of 
interest took place since the national IOT for 2011 is not available. 

Table 1: Sector categories. 

Sectors in national IOT Sectors in MRIOT Abbreviations 

1-3,47-50 Others OTHSV 

4-46 Manufacturing  MANUF 

51-53 Construction  CONST 

54-55 Wholesale and Retail Trade WHRTL 

56-63 Transportation and Storage TRST 

64-65 Accommodation and Food Service FDB 

66-69 Information and Communication INFCM 

70-77 Financial and Insurance Service FNISR 

78-79 Real Estate Service RESV 

80-89 Professional Service PFSSV 

90-97 Administrative and Support Service ADM 

98-116 Community, Social and Personnel Service CSPSV 

 

3.2. Disruption description 

Singapore is one of the world's top locations for oil refining and is regarded as Asia's center of commerce 
(ExxonMobil, 2022). With a total capacity of 1.43 million barrels per day (bpd) in 2010, Singapore was the refiner 



 

of choice for 4.7% of the capacity in Asia Pacific and 1.5% of the global total (DOS, 2020). For example, 
ExxonMobil's refinery on Jurong Island, which has a capacity of 592,000 bpd, is one of the largest in the world 
and accounts for nearly 41% of Singapore's total refining capacity (Ern and Abdullah, 2014). With a processing 
capacity of up to 500,000 bpd, the Royal Dutch Shell refinery on Pulau Bukom Island is the first refinery in 
Singapore and accounted for 35% of the country's total refining capacity in 2010 (ExxonMobil, 2022). 

On September 28, 2011, the Pulau Bukom refinery's largest pump house caught fire. Over the course of the 
following day, the fire spread and became a massive conflagration (Chua, 2011; Ern and Abdullah, 2014). Due to 
the size and intensity of the fire, the Singapore Civil Defense Force (SCDF) declared Operations Civil Emergency, 
the nation's official response plan for civil emergencies, and the refinery was gradually shut down as a safety 
measure (Chua, 2011). The fire was extinguished late on September 29, 2011, after 32 hours of coordinated efforts 
by the SCDF, Shell's firefighting crew, and multiple government agencies. The impacted facility was reverted to 
the refinery on October 2, but operations were halted for the following week. The lack of specific operational data 
makes it challenging to pinpoint the exact timeline for the refinery's return to normalcy. 

The initial effects of the Pulau Bukom fire on the refinery sector are computed using a top-down methodology 
in the single regional level (Mandapaka and Lo, 2023), accounting for the sector's proportionate contribution to 
Singapore's GDP. The manufacturing (MANUF) sector's chemicals cluster, which also includes petrochemicals, 
petroleum, and other specialized chemicals, includes the production and refining activities. Since the analysis in 
this study was conducted using the IO data of 12 broadly grouped sectors, the initial impact is only assumed to 
affect the MANUF sector. In 2010, the chemicals cluster accounted for about 10.4% of the MANUF sector, with 
the sector contributing 22% to Singapore's SGD 327 billion GDP (DOS, 2020, 2022). Moreover, the Pulau Bukom 
refinery accounted for approximately 35% of the nation's total refining capacity. When these data are combined, 
the MANUF sector will initially experience the following daily impact: 

 million. However, the daily output for the MANUF sector in West region where the 
Pulau Bukom island located is SGD 6.88 million, which is less than the initial loss obtained by top-down method, 
which is not in agreement with that the final demand being part of the daily output even though the daily output is 
similar to the final demand loss. The reason may be the inaccurate data for top-down method. Thus, we assume 
the initial loss is almost one day loss for MANUF sector in west region which is set as 

 million.  

4. Results and Discussion 

4.1.  Static IIM for MRIOT and national IOT 

For the initial inoperability level, it is assumed to induce a reduction in final demand in manufacturing sector 
in West region. Thereby, the normalized demand reduction for the MANUF sector in west region,  

. The initial demand reductions for all other sectors are set to 
zero. The initial demand reduction in MANUF sector in West region cascades to other sectors in other regions due 
to the interdependencies among different sectors in the various regions. The total sectoral inoperability for each 
sector in each region can be obtained by demand-side IIM from Section 2.2 (Equation (5)). Then, the total output 
and the resilience under the fire accident can be obtained by Equation (9). 

The regional cumulative economic loss is shown in Fig. 2(a). The comparison between cumulative economic 
loss obtained by national IOT and MRIOT for each region in each sector is shown in Fig. 2(b). From the Fig. 2(a), 
the most influential region is still the initial impacted region  West region, whose output loss (about 8 million 
SGD) is almost eight times that of other regions, while the output losses for other regions are quite similar which 
are approaching SGD 1 million. From Fig. 2(a) and (b), the initial impacted sector  MANUF sector is the most 
impacted sector especially for the MANUF sector in West region, followed by OTHERS sector (OTHSV). From 
Fig. 2(b), the Central region has the strongest interdependencies with the West region since the output loss for 
MANUF and OTHSV sectors in Central region rank the second. The output losses for each region and each sector 
also reveal the resilience of each region and each sector under this fire accident. The directly impacted region and 
the sector have the least level of resilience under this physical fire accident, followed by the regions and sectors 
with large interdependencies with the directly impacted region and sector, such as OTHSV sector. 



 

a.        b.  

Fig. 2. (a) Cumulative economic loss for each sector in each region; (b) Cumulative economic loss for each region in each sector. 

4.2. Dynamic DIIM for MRIOT and national IOT 

To simulate the dynamic situation, the direct fire-induced impact is modified to simulate the real trajectory of 
the initial impacted MANUF sector in West region from September 28 (Day 0), when the refinery closed, to 
October 10 (Day 12), when it began operating at 20% inoperability after the disruption. As data on refinery 
recovery from October 11 (Day 13) till fully recovered is not available, an exponential scenario for slowly decaying 
(concave down) from Day 13 is assumed (Mandapaka and Lo, 2023). Thereby, the full trajectory for initially 
impacted MANUF sector in West region is as follows: 

      (10) 

The inoperability levels for the various sectors in West region are shown in Fig. 3, with the inoperability level 
of MANUF sector rising to  for the first 11 days, then falling to 80% of the  at Day 12, 
and then follows a concave exponential function which represents the recovery path till it fully recovers after 
almost 175 days. 

 

Fig. 3. Inoperability level for different sectors in West region. 

The inoperability levels for various sectors in other regions are shown in Fig. 4(a) to (d). From the four graphs 
in Fig. 4, the most impacted sector in each region is still MANUF sector, followed by OTHSV sector, which is the 
same as the findings from the static IIM. However, the new thing is that the recovery times for these four regions 
are longer than those for the initial impacted region (West region), with the four regions spending almost 200 days 
to return to normal operability level. Fig. 4 (b) shows that North region incurs the highest inoperability level among 
the four other regions, followed closely by Central region. 



 

a.        b.  

c.         d.  

Fig. 4. Inoperability level for different sectors in (a) East region; (b) North region; (c) Northeast region; (d) Central region. 

The total output for each time step during the recovery phase obtained by MRIOT and national IOT are shown 
in Fig. 5, which depicts the resilience triangle which in turn is a graphical representation of the recovery trajectory 
and the resilience for the whole system after the disaster. 

a.        b.  

Fig.5. (a) Total economic loss obtained by MRIOT; (b) Total economic loss obtained by national IOT.  

From the difference in recovery times between (a) and (b) in Fig. 5, the Singapore urban system recovers faster 
when the national IOT is adopted, with the economic loss and recovery propagating faster through the 
interdependencies in the national IOT while the interdependencies may be more complex in the MR urban systems 
within Singapore. Moreover, when the national IOT is adopted, the minimum total output during the recovery 
phase is smaller than when adopting the MRIOT. That is because in the national IOT, the interdependencies are 
stronger than the interdependencies in MRIOT due to the aggregation of the interdependencies in the national IOT, 
leading to lower minimum total output during the recovery phase. 

5. Conclusion 

faces challenges to maintain resilience under increasingly complex interdependencies. Small disruptions in one CI 
sector may lead to unexpected severe disruptions in the whole system due to cascading effects. Moreover, the 
location of each facility in each CI system also play an important role in the interdependencies. Thus, the resilience 
of an urban system should be investigated through a more detailed and complete network of the interdependencies 



 

among different regions and different sectors. Modeling the fragility via a dynamic analysis also helps to present 
a more complete picture of the resilience for this urban system. Through adopting the static IIM in a fire accident 
in West region of Singapore, the cumulative regional economic loss and the cumulative sectoral total economic 
loss are obtained. The initial impacted West region still suffered the largest economic loss, which made up almost 
two thirds of the total loss for the whole Singapore. For the sectoral loss, the initial impacted sector (MANUF 
sector) still suffered the largest loss, followed by the OTHERS sector (OTHSV sector), which is also aligned with 
the findings about the sectoral loss in DIIM. 

Apart from the total economic loss in the whole year, how the economic losses are distributed over the whole 
year is also quite crucial since the resilience of a system is not only related to the total loss, but also related to how 
the system recovers from a disruption, which is essential for understanding how to enhance the resilience and 
conduct the rescue or reconstruction after a disruption. Thus, we adopted the DIIM to investigate the Singapore 
urban system recovery characteristics such as the duration, recovery path, peak inoperability, and lowest total 
output of this urban system after the fire accident in a single regional (national) scenario which treat Singapore as 
whole and only reveal the sectoral performance, and MR scenario which accounted for the detailed location 
distribution of each CI system.  

Moreover, in our MR scenario, the MRIOT and MR disruption data are employed, which enable us to 
investigate a disruption that initially happen in one sector and at a smaller spatial granularity which then propagates 
to all other regions within the urban system. Due to the regional specific transaction data and disruption data being 
available, the MRIIM and MRDIIM used in our case study is the same as the single regional IIM and DIIM, which 
differs from past MR inoperability studies. Through the comparison between the resilience obtained by MR 
scenario and single regional scenario, the actual recovery of the MR system is slower than that in the single regional 
scenario, perhaps due to the more complex interdependencies present in the MR scenario. The ability to perform 
such studies may facilitate the development of more detailed rescue and reconstruction plans for disruptions and 
improve the resilience of urban systems. 

The original contribution for this research is the MR scenario implementation for the high-density urban 
systems which divided the whole urban area into several regions with assigning specific function for each region. 
Previously, due to the unavailability of MRIOT at regional level within a city, the MR disaster impact cannot be 
investigated. Thanks to the implementation of the more detailed MRIOT, the complete picture of the propagation 
of the disaster is obtained and the accurate economic losses for each region and the whole urban system are 
obtained. 

However, there are some limitations in this current work. For instance, the current MRIOT for Singapore is still 
at the five-region level whereas a 55-region level that 
facilitate more accurate sectoral analysis and studies. Moreover, due to the absence of recovery data, the recovery 
path is simulated by an exponential function which may not follow closely the actual situation. 
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