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Abstract 

Addressing the challenge of monitoring product-conditions, particularly in cases without predefined quality criteria, 
necessitates image-based monitoring in the manufacturing process. The lack of target classes requires an unsupervised learning 
approach. This paper explores unsupervised learning through the implementation of Self-Organizing Maps (SOM) as a 
clustering method, performing a parameter study including data preprocessing using standardization and normalization 
techniques, along with tuning SOM parameters. The objective is to identify the parametric sets resulting in clusters aligned 
with manufacturer-specified criteria, mainly roughness values (Ra). The unsupervised machine learning algorithm is expected 
to analyze various parameters and produce results that align with a predefined standard (Ra), simulating a supervised approach 
without explicit data training but by pattern analysis. While briefly delving into the theoretical aspects drawn from published 
research, the paper primarily focuses on demonstrating the feasibility of the proposed methodology. 
 
Keywords: condition monitoring, unsupervised learning, machine learning, self-organizing maps algorithm, surface topography, 
unsupervised neural networks 

1. Introduction 

With the advances happening among the various industries in terms of improving their products and production 
processes, there was an increasing reliance on data analysis techniques. Industries seek ways to integrate data to 
advance their processes and keep up with the world in relying on machine learning. 

In the world of manufacturing, decisions often hinge on the fine details on the surfaces of tools. The idea is to 
study the hidden patterns in these surfaces using advanced machine learning techniques. Surface roughness is one 
of the indicative properties. As a form of quality control for everyday tools such as knives, the manufacturer uses 
surface roughness and specifies numerical roughness standards, outside of which are the knives considered rejects. 
The manufacturer categorizes the produced knives accordingly in three categories. Those categories are set as the 
guideline for quality-control. This production process incorporates machine learning techniques to improve it, by 
using the categories as the set of standards. In this study, self-organizing maps, SOM, a neural networks algorithm 
is used on data taken from the knives, that do not include roughness values, and are compared to the set of 
standards, in the effort of producing results that mimic the standard as much as possible. The process followed by 
this paper has relevance beyond knives, however. It ensures reproducibility by integrating machine learning 
techniques into production processes in general. The paper is divided into two main parts, the theoretical; which 
mainly discusses SOM and practical aspects; describing the feasibility of SOM. 

2. Literature Review 

The general theory behind SOM and the application of algorithms is saturated in literature such as Kohonen 
(1990), Rahaman et al. (2021), Zietsman and Vuuren (2022), and Fu et al. (2023), respectively to name a few.  
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Existing literature, as shown by Tasdemir and Merenyi (2009) in their article discussing topology in SOM, 
predominantly emphasizes on the mapping and visualization aspect of Self-organizing maps. Self-organizing maps 
being primarily a dimension reduction algorithm, explains why this is necessary, however this has left a gap in 

clustering.  
Clustering in neural network is a topic explored often by research, however as inferred from Bock (1998) and 

Shah 
whenever SOM is studied in clustering, most research is hybrid approaches, that can be divided into two main 
approaches. Either a combination of SOM and other clustering algorithms; Li et al. (2013) in a semi supervised 
approach to visualize SOM, using k-

mapping strength, or combinations as to enhance the expected results; Li and Pan (2013a) with the introduction of 
an improved SOM, Isa et al. (2009) in an enhanced hybrid approach, and Jin et al. (2004) in an enhanced algorithm 
named: Expanding SOM.  

There exists literature that deals with neural networks and unsupervised machine learning algorithms on surface 
roughness. Pontes et al. (2009) for example, in their article, artificial neural networks on surface roughness 
modeling. However, exploring this literature reveals that it is done using other algorithms such as, but not limited 
to, k-means. Such as done in Qin et al. (2018) and Castilho et al. (2023) leading to the often-mentioned clustering 
of the SOM and not using the SOM.  

While surface roughness using SOM has not been fully explored, SOM research was still well founded in many 
applications. The versatility of SOM has allowed for that. Applications include Roden et al. (2015) in geology and 
seismic attributes, Schneider et al. (2019) in drug discovery, Hsu et al. (2009) in stock price forecasting, Xiao et 
al. (2003) in gene clustering and Cassano et al. (2015) in weather temperature analysis. Diving into hybrid 
clustering approaches and the various applications, the practical significance becomes evident, especially in terms 
of production processes and quality control. Quality control in various aspects is well studied, however the 
introduction of neural networks in this field is mostly limited to Convolutional neural networks as shown by Azizah 
et al. (2017), Mamaeva et al. (2022), and Adibhatla et al. (2020) to name a few, with a noticeable number of 
literature on Artificial neural networks Wang et al. (2019). Where Quality control using SOM was studied, in cases 
presented by Li and Pan (2013a) and Li and Pan (2013b), it was dealt with in hybrid scenarios as previously 
discussed, with addition of k-means by the former, and the application of an enhanced SOM model by the latter. 
And while SOM was sometimes used for production processes-monitoring, as mentioned by AlHoniemi et al. 
(1999), it was done in a way different to what this paper aims to cover. 

As shown, in the exploration of neural network clustering or the implementation of quality control checks, a 
variety of algorithms have been prevalent. This study aims to exclusively employ SOM, highlighting its distinctive 
capabilities. The focus is specifically on a standalone application of SOM, as opposed to hybrid methodologies. 
The scope of application extends to surface roughness, an aspect that has received limited attention in the context 
of SOM applications. The main goal however is the reproducibility of the results beyond surface roughness, as a 
quality control measure across the spectrum of applications, using an extensive parametric study.  

3. Machine learning in context 

Machine learning, a subset of artificial intelligence, deals with applying algorithms on data, as to train and test 
data in one of the three main methods, unsupervised, supervised and reinforcement learning. Unsupervised 

opposed to training the results into an expected output. (Holmes and Jain (2006)) 
Deep learning is a class of machine learning and is the scope of this paper. Deep learning is based on neural 

networks. Which resemble the human brain neurons in terms of complexity and layers, thought of as to mimic the 
signals transfer between neurons. Artificial neural networks consist of an input layer, (usually) one hidden layer 
or more, and an output layer. As is the case with all methods, neural network types are numerous. However, the 
main algorithms are Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), containing 
convolutional layers and neurons, used mainly for computer vision and pattern recognition, and Recurrent Neural 
Networks (RNN) used for time series data, and future predictions. The main types are feed-forward neural 
networks: processing data in one direction, backpropagation: with continuous learning using corrective feedback 
loops, and convolutional neural networks: the hidden layers carry out mathematical operations known as 
convolutions. These are trained using the supervised, unsupervised and reinforcement approaches. (Alom et al. 
(2019), Guo et al. (2016)) 



 

SOM is a dimensionality reduction-clustering unsupervised neural network approach. This algorithm uses a 
type of competitive learning process. SOM consists of an input layer and an output layer, where the input layer is 
the data with its dimensions, and the output layer is the representative layer, usually in 2D. This ensure a dimension 
reduction, with topological preservation of the relationships of the input data, where similar input patterns are 
mapped onto neighbouring locations on the output grid, called the map. Where the output layer representatives are 
called nodes. The nodes are arranged in proximity, with the degree of closeness reflecting their similarity to each 
other. The SOM learning process is deterministic, leading to reproducible results.  

Each input dimension is connected to all output nodes by specific weights to each. This means that each output 
node has a vector of weights from all input dimensions, acting as its coordinates. Each of the weights in the vector 
will have coordinates for the dimension and for the datapoint. The output nodes have a place in the space, and this 
place is adjusted throughout as will be explained. After that, for each datapoint of the input dimensions, the 
algorithm tries to find the closest node to it. This happens as follows: each datapoint has a specific value in each 
of the dimensions, for each of the nodes there is also a specific weight for each of the dimensions, the distance 
between these points is found for each of the nodes using the Euclidean distance. The node that has the smallest 
distance is hence called the best matching unit for this datapoint. 

Distance =   (1) 

V: input vector values, W: weights, N: number of dimensions 
 

Now, the adjusted SOM must modify its weights to achieve an even greater proximity to this datapoint in the 
dataset. This adjustment is because only output nodes can be updated. The map gets closer to the datapoint by 
shifting best matching unit towards it, leading 
towards the datapoint, the neighbouring nodes move along with it. This allows for clustering the data.  

Then, the algorithm draws a radius around the best matching unit using equation (2), causing all nodes within 
this vicinity to update their weights, to allow for the shift, and closer neighbouring nodes have heavier weights 
updated, hence preserving the topology. This is where the cooperation process is applied and is done using the 
weight updating equation (3).  

  (2) 
: Width of lattice at time t0, width of lattice at time t, t: time, : time constant 

 
  (3) 

 : The new weight 
  (4) 

L(t): Learning rate at t,  : learning rate at t0 
 

   (5) 
: Influence rate 

 
The map here changes slightly as to align. Now that there are new weight vectors (no need for weight 

initialization), this is then repeated for every data point, until the map aligns completely with the input data, 
meaning convergent, or till a stopping criterion is reached. (Van Hulle (2012), Kohonen (2013), Cottrell et al. 
(2018), Kohonen (1990), Ponmalai and Kamath (2019), Natita et al. (2016), Ng and Chan (2019)).  

4. Operational framework 

In the practical aspect discussed in the following section of the paper, the study of SOM pursues two main 
goals. Firstly, it involves an extensive, methodical exploration of various parameter setups to determine the most 
efficient set. Secondly, it includes a quantitative assessment aimed at comparing the results achieved. 

4.1. Data source 

The dataset is multivariate, featuring 42 variables, and is structured and numerical in nature. This dataset 
originates from three distinct knife types, provided by the manufacturer. The dataset is divided into two main 
components: optical and mechanical. The optical dataset consists of various line and optical measurements, 
analyzed through computer vision. The optical measurements are confined to specific regions of the surfaces, as 



 

illustrated in Fig. 1, where all images are uniformly cropped, and the reference section of the knives is clearly 
identified (Hinz et al., 2019). Whereas the mechanical dataset encompasses parameters such as color, roughness, 
and gloss values. 

 
Fig. 1. Knife-image taken by the camera. 

The objective is to compare the mechanical data with the optical data to explore potential correlations. Among 
the three categories of target variables, emphasis is placed on roughness, denoted by the Ra value. This value is 
calculated using Equation (6) (Sancaktar and Gomatam, 2001): 

          (6) 
Where m is the total scanned length in the x direction. 

4.2. Data parameterization and method implementation 

The scope of this research is an extensive parametric study to explore both clustering and mapping capabilities 
of SOM, as to form reproducible results for future quality control and a variety of applications. For this purpose, 
the Minisom implementation of this algorithm is used. This was chosen based on its extensive presence in research 
(Fu et al. (2023), Rahaman et al. (2021), and Muhammad et al. (2022)).  

The initial step involves preprocessing the mechanical data. This entails employing two standardization 
techniques, one normalization technique, and a combination of both. The sequence of combining these techniques 
is varied, resulting in seven distinct combinations of preprocessed mechanical data, while one dataset remains 
untreated. 

Then, the following parameters where tuned: number of columns and rows, sigma, learning rate, neighborhood 
function, topology, and the number of iterations. The topographies of the output layer varied between rectangular 
and hexagonal in 2D. The learning rate explained previously was varied between 0.1, 1, 2.5, 4 and 5 while the 
number of iterations was changed between 5, 50, 400, and 1000. These selections for those two parameters are 
made to encompass a broad spectrum, examining the patterns they follow and exploring the tendencies. After 
going through multiple runs of the algorithm on various segments of the data with diverse parameter values, it was 
concluded that these are satisfactory. For the neighborhood functions, the four possible types are tested, namely: 
gaussian, Mexican hat, bubble, and triangle. Each of those functions is described by its shape, acting as the de 

them. (31, 32) 
The sigma values for gaussian and Mexican hat however differ from those used for bubble and triangle. This is 

dictated by the minisom as described in its documentation. Moreover, while for the former two, values: 0.1, 0.5, 
0.8, 1, and 1.5 are used, values 1, 2, 3, and 4 are used for the latter two. The rationale behind this is that for the 
latter two, values less than one and non-integers are not allowed. Additionally, for all values, whenever the sigma 
value equals that of the column or row, the sigma is deemed too high for the dimension of the map. Using decimals 
less than one for gaussian and Mexican hat was done with the purpose of exploring the behaviour with low shifts 
and because based on separate several runs of the algorithm, these values seemed to have an impact on the outcome. 
The number of rows and columns is varied between 1, 2, 3, and 4.  
SOM cluster data based on its output map, hence not allowing for a pre-tuning of the number of clusters. For the 
purposes of this study however, it is necessary to limit the number of clusters to exactly three, as to allow for a 
compatibility study between these and the clusters stated by the manufacturer or standardized clusters which are 
also three. After the data is preprocessed, it goes through the algorithm where all the parametric combinations are 
run. Each set of parametric combinations is run and fitted to form a map that best represents it. The algorithm 
further clusters based on the map, resulting in different number of clusters each run. Whenever this number is 
three, it is counted into the study, all other cluster numbers and their parametric settings are discarded in this study.  

Clusters are fitted to correspond to an array of 0, 1, or 2, indicating the cluster each datapoint belongs to. The 
paper's primary focus is the roughness value, classified into three classes. This classification is based on the 
manufacturer's criteria, which provide a set of roughness values with an upper and lower limit. Roughness values 
outside these limits are deemed useless by the manufacturer and thus avoided in knife production. Consequently, 
the clustered data are set to be compared against these limits. The number of clusters is selected to match the 



 

number of roughness value classes set by the manufacturer, and the order of the clusters must align with the 
roughness order. 

The SOM algorithm labels clusters arbitrarily but consistently, so the cluster order might need reassignment. 
This is achieved by renaming the clusters based on the roughness values in each cluster. Additionally, the mean 
roughness value for each cluster is calculated. Clusters are then renamed in ascending order of their roughness 
mean: the lower the mean, the lower the cluster number. With the clusters relabeled, they are ready for comparison 
to assess how well the clustering method aligns with the manufacturer's criteria. The algorithm's efficiency is 
evaluated using various metrics, with overall efficiency being paramount. The most efficient parameter set is 
chosen for analyzing the surface topographies of knives within this criterion and production process. 

As demonstrated earlier, the data has no labels and is trained through unsupervised learning techniques. But by 
comparing it to some prescribed set of data and expecting it to comply with it, by calculating the efficiency, and 

-parameter analysis, this study mimics a supervised machine learning method. 
Consequently, this investigation emulates aspects of supervised machine learning, thus transforming an initially 
unsupervised method into one that, to some extent, mirrors the characteristics of supervised machine learning.  

5. Discussion of results 

It is crucial for the understanding of the results to note that, as explained in data parameterization, there are 
many variables. Moreover, since that in this algorithm the number of clusters cannot be predefined while tuning, 
all the parametric setting-combinations are run, and the ones resulting in clusters more or less than three are 
discarded. This means that for each of those parameters, the chosen options have a different number of runs (model 
numbers). Meaning they cannot be directly compared to each other. Additionally, the chosen sigma values used 
for the chosen neighbourhood functions are not the same for all of them. This leads to lesser control variables such 
as model number and sigma values, hence preventing direct comparability. This is further illustrated by figure 2.  
Additionally, the conclusions drawn from results are based on the efficiency values collected by the runs and not 
from such graphs, the trends were also studied separately.     
 

 
Fig. 2. Learning rates efficiencies and model numbers. 

This set of learning rates was used for all parameters in all their combinations, meaning it could be considered 
as a control variable for the combinations. Even with this being the case, five options result in variant model 
numbers. Moreover, the model numbers for each of the five rates was inversely proportional to the learning rate. 
This requires a comparison of the model numbers that achieved success and convergent. This highlights the notion 
that the model number is related to the success of this parameter choice and combination, hence a form of 
efficiency-testing. Moreover, parameters with a higher model number have lesser parametric combinations 
discarded, meaning they have more models that fulfilled the requirements within the context already described.    
Trends can therefore not be inferred from the graph. Consequently, conclusions for all the parameters and their 



 

model numbers were however analysed from the efficiencies and discussed in the following sections. Trends, 
number of models and efficiencies are analysed and compared below. 

For learning rates, the higher rates of 4 and 5 behaved similarly and rates 2.5, 0.1 and 1 showed similar trends. 
All rates almost stabilize at 33% efficiency, meaning a considerable number of parametric combinations attain this 
percentage. The highest learning rate 5 has the lowest number of combinations that are under 33%, while 2.5 was 
the most spread. The lowest efficiency achieved was attained by rate of 1, which was 1.38% less the maximum, 
achieved by learning rate: 0.1.  

For the topology parameter, both types replicate each other. The rectangular map shape had slightly more runs 
for all parametric combinations and three clusters. The Hexagonal shape has attained a maximum efficiency of 
0.162% more than that of the rectangular one. But occasionally achieved slightly (around 1%) lower efficiencies 
than rectangular shape, at around the efficiencies of 35%.   

While all combinations of neighborhood functions cover the full range of efficiency, bubble has achieved the 
lowest efficiency with 0.66% less than the overall maximum achieved by Mexican hat. As expected, bubble and 
triangle behave like each other as do gaussian and Mexican hat. However, Mexican hat, having the second highest 
number runs, amounts to around 50% of those achieved by gaussian. Triangle has the least number of combinations 
under 35% percent. The three other functions stabilize at around 33%. The triangle function as shown has more 
spread over the efficiencies. Overall, gaussian and Mexican hat excel in efficiencies with learning rates higher than 
2.5, lower sigma values (less than 1) and lower iterations numbers.  

As sigma values are coupled with the neighborhood functions, they behave in accordance with the values used 
for the neighborhood functions. Meaning, 2 and 3 behave similarly. however as can be noticed, 1.5 also behaves 
like those. While values 0.5 and 0.8 behave like each other. sigma of value 1 shows a tendency to the middle. 
Sigma value 3 has the fewest runs and it has the highest initial value in comparison to all other combinations, of 
about 5% more than the lowest. It however also gives the lowest overall efficiency. Sigma values of 0.1 show 
steeper changes in efficiencies with many percentage skips throughout, because it covers the full range of 

 
Five iterations have the highest number of runs similar in behaviour to 400 iterations, with 1000 and 50 

behaving similarly. The 1000 iterations had the largest number of runs under 20% efficiency in comparison to the 
others, with 400 having the lowest, percentagewise. Under 33% all values behave similarly, due to combinations 
including mainly Mexican hat and gaussian, and lower sigma values. 1000 iterations show the lowest highest 
efficiency of all the options.  

While all pre-processing techniques cover the whole range of efficiency, there are noticeable discrepancies. 
Mixed techniques excel, but at the trade-off of 1% and the correct parametric combinations: 50 iterations, 0.1 
learning rate, sigma equals to 1, gaussian neighborhood function and 2*4 map-shape, unpreprocessed data could 
be used. The lowest highest efficiency was achieved by un-preprocessed data. Normalization-standarization (NS) 
has the least number of lowest efficiencies achieved with its parametric combinations, with less than 5% of its run 
attain under 30% efficiency, it has a good spread an achieves a maximum of just 0.08% less than the overall 
achieved maximum, making NS an attractive option.  

Shape affected number of clusters mainly. An observation of that shows that 50% of the total iterations were 
represented in maps on 1*3 ad 3*1. While only 20% of the combinations were 3*3, 4*4, and 2*2.  

The highest 4% of the efficiency attained is achieved by predominantly the lowest numbers of iterations, a 
combination of learning rates and sigmas, and mainly preprocessed data by more than one method each 
(standardization, normalization, normalization-standardization, and minmax-standardization). Efficiencies vary 
with those parameters largely, with the lowest being around 40% less than the highest overall attained efficiency. 
Un-preprocessed data predominates in the middle to low efficiency ranges, around the 30%. More than 60% of the 
data that was compatible was of the gaussian function, with its combinations present all over the efficiency 
spectrum (lowest and highest). 24% of all the parametric combinations achieve the highest 4% of efficiency. 
Bubble and triangle functions are the least represented of all the functions, because of the sigma and map 
limitations. They however outperform the other algorithms over all in efficiencies. Combinations with mid-high 
learning rate (2.5) achieve lower efficiencies in their combinations as compared to combinations of lower learning 
rates. The lowest 5% of the efficiencies attained were achieved by combinations with the highest numbers of 
iterations.  

The highest efficiency was achieved by preprocessing standardization followed by normalization, 400 
iterations, sigma = 1, hexagonal, learning rate of 0.1, Mexican hat as the neighborhood function, and a shape of 
4*4. With 54,65%, the highest 0.6% of all efficiencies were achieved by Mexican hat combinations. It is important 

over the results. All parameters here except topography have an impact on the efficiency. This is partly because as 
previously discussed, most parameters are intertwined.   



 

Figures 3 a-d show a visualization of the most efficient parametric setting achieved by this study on a self-
organizing map of 24*24 since the cluster number was already ensured to be three. This is done as to allow for a 
clearer visualization of the mapping. Figures 3b, c, and d show mappings of the 42 dimensions reduced to two for 
datapoints that represent roughness (Ra3) classes 0, 1 and 2 respectively. Moreover, each graph shows where the 
datapoints relating to one class would be mapped if they were filtered and mapped alone without the influence of 
the other Ra3 classes. Figure 3a shows how the SOM algorithm maps all these datapoints together. Datapoints do 
not map in figure 3a the way the map separately because of the influences of other datapoints as mentioned earlier 
in the discussion of SOM causing shifts in specific positions. The overall mapping of all classes at certain positions 
on the graph shows the datapoints most represented there. At points that are red for example, there could exist 
other datapoints (blue or green), but the colour code shown is the one represented the most at this position (more 
red datapoints are placed here than other colours). Shape discrepancies such as coloured corners reveal that another 
colour also exists at this position but is less represented in quantity. Another discrepancy revealed upon closer 
inspection is datapoints represented with slight corners as opposed to dots, this insinuates to more of the same 
colour datapoints at that position, forming a squarer shape.      

 
As can be inferred, the data is heterogenous, and shows a lack of distinguishability between classes.  This 

consequently poses as an obstacle to yield higher efficiencies according to the predefined classes by the 
manufacturer. The SOM reduces the dimensions by mapping differently from the manufacturer set-quality criteria, 
that is.  As intended by the study, once the mapping is achieved, the algorithm further clusters the data in a manner 
shown by unsupervised learning algorithms such as K-Means and Gaussian Mixture Models (GMM) (Hinz et al. 
(2022a, 2022b)).   

 

Fig. 3 a-d: Roughness values based-mapping, a: SOM and all roughness classes, b: SOM and roughness class 0,  
c: SOM and roughness class 1, d: SOM and roughness class 2.  

6. Conclusion  

In conclusion, this paper studies the SOM unsupervised machine learning algorithm by application on data 
derived from the surfaces of three knife types provided by the manufacturer. Data extracted using computer 
vision undergoes clustering with the help of a neural network algorithm and is subsequently compared with 
specified roughness values provided by the manufacturer. These predefined criteria serve as determinants 



 

regarding the knives' usability. The model examines surface topographies and assesses their quality, using a 
parameter-study that explores eight varying parameters. The outcomes of each parameter set are compared 
against the manufacturer's set upper and lower limits, and the efficiency of each set is calculated and discussed. 

Looking ahead to future research, a comprehensive analysis of diverse unsupervised algorithms will be 
undertaken and thoroughly examined. Through the evaluation of multiple algorithms, the overall efficiencies, as 
well as the identification of the optimal algorithm for conducting similar analyses with similar sets of data will be 
determined. These advancements aim not only to expand our understanding of unsupervised machine learning 
applications in surface quality analysis but also to provide reproducible methodologies accessible to other 
manufacturers, contributing to the broader progress of this field. 

References 

Adibhatla, V. A., Chih, H. C., Hsu, C. C., Cheng, J., Abbod, M. F., Shieh, J.-S. 2020. Defect detection in printed circuit boards using you-
only-look-once convolutional neural networks. Electronics 9(9), 1547. 

using the self-organizing map. Integrated 
Computer-Aided Engineering 6(1), 3 14.  

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Hasan, M., Van Essen, B. C., Awwal, A. A., & Asari, V. K. 
2019. A state-of-the-art survey on Deep Learning Theory and Architectures. Electronics 8(3), 292.  

Azizah, L. M., Umayah, S. F., Riyadi, S., Damarjati, C., Utama, N. A., 2017. Deep learning implementation using convolutional neural 
network in mangosteen surface defect detection. 7th IEEE International Conference on Control System, Computing and Engineering, 
242-246. 

Bock, HH. 1998. Clustering and Neural Networks. Rizzi, A., Vichi, M., Bock, HH. (Eds) Advances in Data Science and Classification 
Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg.  

Cassano, E., Glisan, J., Cassano, J., Gutowski, W., Seefeldt, M. 2015. Self-organizing map analysis of widespread temperature extremes in 
Alaska and Canada. Climate Research 62(3), 199 218.  

Castilho, V. M., Balthazar, W. F., da Silva, L., Penna, T. J. P., Huguenin, J. A. O. 2023. Machine learning classification of speckle patterns 
for roughness measurements. Physics Letters A. 

Chakraborty, B., Menezes, A., Dandapath, S., Fernandes, W. A., Karisiddaiah, S. M., Haris, K., Gokul, G. S. 2015. Application of hybrid 
techniques (self-organizing map and fuzzy algorithm) using backscatter data for segmentation and fine-scale roughness characterization 
of seepage-related seafloor along the western continental margin of India. IEEE Journal of Oceanic Engineering 40(1), 3 14.  

Holmes, D., Jain, L. 2006. Innovations in Machine Learning : Theory and Applications. Springer. 
Sancaktar, E., Gomatam, R. 2001. A Study on the Effects of Surface Roughness on the Strength of Single Lap Joints. Journal of Adhesion 

Science and Technology 15, 97-117. 
Fu, Q., Li, Y., Albathan, M. 2023. A supervised method to enhance distance-based neural network clustering performance by discovering 

perfect representative neurons. Granular Computing 8(5), 1051 1065.  
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M. S. 2016. Deep Learning for Visual Understanding: A Review. Neurocomputing 

187, 27 48.  
Hinz, M., Meslem, D.,  Bracke, S. 2022a. The application of the Gaussian Mixture Model algorithm for the unsupervised analysis of surface 

topographies. Probabilistic Safety Assessment and Management PSAM 16. 
Hinz, M., Meslem, D., Bracke, S. 2022b. The application of the K-means algorithm for the unsupervised analysis of surface 

topographies. Proceedings of the 32nd European Safety and Reliability Conference ESREL2022. 
Hinz, M., Radetzky, M., Guenther, L. H., Fiur, P., Bracke, S. 2019. Machine Learning Driven Image Analysis of Fine Grinded Knife Blade 

Surface Topographies. Procedia Manufacturing 39, 1817-1826. 
Hsu, S. H., Hsieh, J. P. A., Chih, T. C., Hsu, K. C. 2009. A two-stage architecture for stock price forecasting by integrating self-organizing 

map and support vector regression. Expert Systems with Applications 36(4), 7947 7951.  
Isa, D., Kallimani, V. P., Lee, L. H. 2009. Using the self organizing map for clustering of text documents. Expert Systems with Applications 

36(5), 9584 9591.  
Jin, H., Shum, W. H., Leung, K. S., Wong, M. L. 2004. Expanding self-organizing map for data visualization and cluster analysis. 

Information Sciences 163(1 3), 157 173.  
Kohonen, T., 1990. The self-organizing map. Proceedings of the IEEE 78(9), 1464-1480. 
Kohonen, T. 2013. Essentials of the self-organizing map. Neural Networks 37, 52 65.  
Li, W., Zhang, S., He, G. 2013. Semisupervised distance-preserving self-organizing map for machine-defect detection and classification. 

IEEE Transactions on Instrumentation and Measurement 62(5), 869 879.  
Li, Y., Pan, F. 2013a. Application of improved SOM neural network in manufacturing process quality control. Proceedings of the 2nd 

International Conference on Computer Science and Electronics Engineering (ICCSEE 2013).  
Li, Y. B., & Pan, F. 2013b. Study on the combination of SOM and K-means algorithms in manufacturing process quality control. Applied 

Mechanics and Materials, 427 429.  
Cottrell, M., Olteanu, M., Rossi, F., Villa-Vialaneix, N. N. 2018. Self-Organizing Maps, theory and applications. Revista de Investigacion 

Operacional 39 (1), 1-22.  
Mamaeva, A., Krasnova, O., Khvorova, I., Kozlov, K., Gursky, V., Samsonova, M., Tikhonova, O., Neganova, I. 2022. Quality control of 

human pluripotent stem cell colonies by computational image analysis using Convolutional Neural Networks. International Journal of 
Molecular Sciences 24(1), 140.  

Muhammad, G., Saeed, U., Islam, N., Kumar, K., Hussain, F., Khurro, M. A., Shaikh, A. A., Ali, I. 2022. GVDeepNet: Unsupervised deep 
learning techniques for effective genetic variant classification. Pakistan Journal of Engineering and Technology 5(1), 16 22.  

Natita, W., Wiboonsak, W., Dusadee, S. 2016. Appropriate learning rate and neighborhood function of self-organizing map (SOM) for 
specific humidity pattern classification over southern Thailand. International Journal of Modeling and Optimization 6(1), 61 65.  



 

Ng, S., Chan, M. 2019. Effect of neighbourhood size selection in som-based image feature extraction. International Journal of Machine 
Learning and Computing 9(2), 195 200.  

Ponmalai, R., Kamath, C. 2019. Self-Organizing Maps and Their Applications to Data Analysis.  
Pontes, F. J., Ferreira, J. R., Silva, M. B., Paiva, A. P., Balestrassi, P. P. 2009. Artificial neural networks for machining processes surface 

roughness modeling. The International Journal of Advanced Manufacturing Technology 49(9 12), 879 902.  
Qin, L., Yi, Z., Zhang, Y. 2018. Unsupervised surface roughness discrimination based on bio-inspired artificial fingertip. Sensors and 

Actuators A: Physical 269, 483 490.  
Rahaman, S., Samuel, R., Neamtiu, I. 2021. Quantifying Nondeterminism and Inconsistency in Self-organizing Map Implementations.  IEEE 

International Conference on Artificial Intelligence Testing (AITest), 85-92. 
Roden, R., Smith, T., Sacrey, D. 2015. Geologic pattern recognition from seismic attributes: Principal component analysis and self-

organizing maps. Interpretation 3(4).   
Schneider, P., Tanrikulu, Y., Schneider, G. 2009. Self-organizing maps in drug discovery: Compound Library design, scaffold-hopping, 

repurposing. Current Medicinal Chemistry 16(3), 258 266.  
Shah, J., Murtaza, M. 2000. A Neural Network Based Clustering Procedure for Bankruptcy Prediction. American Business Review 18(2). 
Tasdemir, K., Merenyi, E. 2009. Exploiting data topology in visualization and clustering of self-organizing maps. IEEE Transactions on 

Neural Networks 20(4), 549 562.   
Van Hulle, M. M. 2012. Self- Springer, Berlin, 

Heidelberg.  
Wang, Z., Feng, J., Fu, Q., Gao, S., Chen, X., & Cheng, J. 2019. Quality control of online monitoring data of air pollutants using artificial 

neural networks. Air Quality, Atmosphere &amp; Health 12(10), 1189 1196.  
Xiao, X., Dow, E. R., Eberhart R., Miled, Z. B., Oppelt, R. J. 2003. Gene clustering using self-organizing maps and particle swarm 

optimization. Proceedings International Parallel and Distributed Processing Symposium, 10. 
Zietsman, H., Vuuren, J. 2022. A generic framework for decision support in retail inventory management. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 


