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Abstract 

The paper considers the redundancy allocation problem (RAP) in three fundamental system reliability structures: series, series-
parallel, complex bridge. The system is composed of binary, heterogeneous, repairable components that are active in cold 
standby mode. Maximization of system availability under a cost constraint was used as the objective function. A continuous-
time Markov model was developed to determine the availability of the system and subsystems. Two approaches were proposed 
to solve the RAP: a genetic algorithm and an iterative algorithm based on an availability importance measure (AIM). The 
results of the numerical examples indicated the greater efficiency of the genetic algorithm, however, the AIM-based algorithm 
needed a much shorter time to allocate standby components.  
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1. Introduction 

In real-world engineering systems, reliability and availability are critical to the efficient and safe execution of 
many processes. Redundancy in a system may refer to functional aspects (the system is equipped with additional 
over and above the necessary functions), parametric aspects (the system has increased values of technical 
parameters) and structural aspects (the system contains additional components) 
2017). Increasing the reliability structure by adding standby components reduces the risk of system failure and 
increases the safety of system operation. However, the design of redundant technical systems is almost always 
limited by the amount of available financial resources (Lins and Droguett, 2011). In the literature, this concern is 
referred to as the redundancy allocation problem (RAP). 

Due to the wide variety of system structures and component types that exist, the optimization of redundancy 
presents a complex field of study (Zaretalab et al., 2020). The scientific literature is dominated by the division of 
components according to the space of possible states (binary and multi-state), homogeneity (homogeneous and 
heterogeneous), repairability (non-repairable and repairable), intensity of damage and repair over time (constant 
and time-dependent), and standby mode (cold, warm and hot) (Sharifi et al., 2019; Sharifi and Taghipour, 2022). 
Optimizing the placement of standby components in the system reliability structure is carried out according to an 
objective function that addresses at least one of three aspects: maximizing reliability (Yeh et al., 2021), maximizing 
availability (Zaretalab et al., 2022), and minimizing cost (Li and Zhang, 2022). 

One of the most common approaches to RAP are evolutionary meta-heuristic algorithms (EAs), particularly 
genetic algorithms (GAs) (Keshavarz Ghorabaee et al., 2015). Maximizing system reliability with a cost constraint 
was carried out in the paper (Gholinezhad & Zeinal Hamadani, 2017) using a proprietary genetic algorithm. For a 
weighted k-out-of-n Khorshidi et al. (2016) used GA to maximize the system availability. A novel pseudo-parallel 
GA proposed by (Zhang et al., 2023) to optimize redundancy, in k-out-of-n systems with mixed redundancy. They 
used continuous-time Markov chains to assess system reliability. The developed algorithm was validated on four 
benchmarks. The paper (Tannous et al., 2011) compares the genetic algorithm with integer programming, 
indicating that GA can achieve better objective function results, however, in much longer computation time. 
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The high efficiency of evolutionary algorithms is the reason for their usefulness in solving the RAP, however, 
the relatively long computation time creates the need to look for alternative approaches. This article addresses 
these concerns by proposing an availability importance measure approach that was developed and comparing it 
with the genetic algorithm. To evaluate the performance of the two developed algorithms, a study was conducted 
on three benchmark systems: series, series-parallel and complex bridge. 

2. Methodology 

2.1. Assumption 

In the analyzed redundancy allocation problem, the following assumptions have been adopted: 
 The system consists of heterogeneous components; 
 There are three possible states of component: working, cold standby and failure; 
 Failures and repairs are independent Poisson processes; 
 The failure and repair rates of components are constant; 
 The costs of components are constant; 
 At time t = 0 all components are operational; 
 It is assumed that the switching time from the standby to the working state is equal to 0 (perfect switch). 

2.2. Problem formulation 

The paper considers the redundancy allocation problem with a single-criteria objective function, represented as 
maximizing system availability, according to the Equation (1): 

. (1) 

The main constraint condition is the total cost of the system, expressed as the sum of the costs of all its 
components: 

, (2) 

while satisfying the conditions of positive integer number of components and positive value of unit cost of each 
component (3)  (4): 

, (3) 

. (4) 

According to the assumptions made, failure and repair rates are constant over time (5)  (6): 

 (5) 

 (6) 

2.3. Markov model 

Continuous time Markov chains are utilized to describe multi-state technical systems that are characterized by 
exponential distributions of failure and repair processes (Oszczy . One active 
component supported by  cold standby components can be presented as a 1-out-of-n subsystem. The active 
component is getting damaged with constant lambda intensity, while the other efficient components in cold standby 
mode cannot get failed. Each failed component is repaired independently with constant intensity . Thus, if a 
subsystem is in the state , where  then it can transition to the state  with an intensity 
equal to  and to the state  with an intensity equal to . The graph of interstate transitions of the 

 state Markov model for the 1-out-of-n system is presented in Fig. 1. 



 

 
Fig. 1. Markov model transition graph for a 1-out-of-n system with cold standby components. 

The Markov process of transition of reliability states is described by the transition intensity matrix 
, according to the Equation (7): 

. (7) 

For a homogeneous stationary Markov process, the matrix equation (8) is satisfied: 

. (8) 

The ergodic probabilities of the model are determined by assuming the following normalization condition (9): 

. (9) 

In the  state space of the Markov model for a 1-out-of-n subsystem, the set  of availability states is 
equal to  where  means that there are k operational components in the subsystem. For 
the notation thus adopted, the availability of the system is expressed as the sum of the ergodic probabilities of all 
states belonging to the set :  

. (10) 

2.4. Availability of system (series, series-parallel, bridge) 

In this study, three main reliability structure benchmarks are considered for a series system, a series-parallel 
system and a complex bridge system. In the literature, these benchmarks are widely used to validate many 
optimization methods and algorithms (Kanagaraj et al., 2013; Mahdavi-Nasab et al., 2022; Ouyang et al., 2019). 
The structures of the systems are presented in Fig 2. An availability is a metric used to determine the reliable 
functioning of a repairable system. It is an objective evaluation that provides crucial information on the system's 
ability to operate without failures over time . 

In a series system, failure of one component (subsystem) causes failure of the entire system. Thus, the 
availability of a system is calculated as the product of the availability  of all its components (subsystems). For 
the system illustrated in Fig. 2a,  availability follows the equation (11): 

. (11) 

The availability of the series-parallel system (Fig. 2b) is calculated according to the formula (12): 

. (12) 

The availability of the complex bridge system (Fig. 2c) is determined by the equation (13): 

.                                 (13) 

 

 

 

 



 

Fig. 2. Three main benchmarks from the literature (Hsieh, 2021): (a) series system, (b) series-parallel system, (c) complex bridge system. 

2.5. Genetic algorithm 

Genetic algorithms (GA) are a mathematical interpretation of the biological mechanism of evolution and belong 
to the group of meta-heuristic methods. The algorithm is based on three fundamental processes, i.e. selection, 
crossover and mutation. The first step of GA is to randomize the initial generation of solutions. The chromosomes 
that encode the distribution of components within the system are subsequently decoded. Based on the decoded 
chromosomes, the availability of subsystems is evaluated using Markov models and then the availability of the 
entire system is calculated. The selection process is carried out using the steady-state selection method, during 
which the 4 solutions with the highest system availability value are selected from a population of 16 solutions. The 
selected solutions are the parents of the new generation, which is created by one-point crossover. To avoid the 
traps of local extremes, the algorithm performs mutation of offspring chromosomes with a probability assumed 
equal to 0.1. In this way, a new generation is created and the subsequent processes of the genetic algorithm are 
repeated until a stopping criterion defined as 100 generations is reached. 

The flowchart of the genetic algorithm is presented in Fig. 3, and the parameter values are listed in Table 1. 
 

Fig. 3. A flowchart of the developed genetic algorithm. 



 

Table 1. Parameters and methods for the Genetic Algorithm. 

Parameters/methods Values 

Number of generations 100 

Population size 16 

Selection Steady state selection 

Selected solutions for crossover 4 

Crossover method One-point crossover 

Mutation probability 0.1 

2.6. Availability importance measure-based algorithm 

Birnbaum introduced the reliability importance measure to identify which components have the greatest impact 
on the decrease in system reliability. Birnbaum Importance Measure (BIM) of the i-th component is defined as a 
ratio of system reliability to component reliability at time t (Birnbaum ZW, 1969): 

. (14) 

For repairable technical systems, the significance of components (or subsystems) is determined using the 
availability importance measure (AIM) (Gravette and Barker, 2015): 

. (15) 

AIM, unlike BIM, takes on time-independent values, a property that allows it to be used to determine the 
importance of components in a system regardless of the assumed lifetime of the system. For the three considered 
reliability structures, the importance of their individual components has been determined in accordance with the 
dependencies (16)  (26): 

 Series system 

, (16) 

 Series-parallel system 

, (17) 

, (18) 

, (19) 

, (20) 

, (21) 

 Complex bridge system 

, (22) 

, (23) 

, (24) 

, (25) 

. (26) 

In addition, in the system design process, it is important to estimate the increase in the subsystem's availability 
indicator after adding one standby component and the associated cost. The high value of the AIM and the increased 
availability of the subsystem is a factor prompting the allocation of redundancy in the subsystem, while the cost 
of the additional component is a factor counteracting such action. Based on the above considerations and theses, 



 

an indicator  was proposed to determine the priority in the process of allocating standby components for the i-th 
subsystem, which is expressed as a relationship: 

 (27) 

Flowchart of iterative algorithm based on availability importance measure is presented in Fig. 4. The first step 
is to allocate active components to the system. Next, the cost of the system is calculated, and if the optimization 
cost constraint is met, the algorithm creates models based on continuous-time Markov chains to determine the 
values of subsystem availability indicators. The system availability and AIM are then calculated based on these 
subsystem availabilities. The allocation of a standby component to a subsystem is performed according to the 
largest value of the  indicator, whereby the unit cost of this component cannot exceed the difference between the 
cost constraint  and the current system cost level. These steps are repeated as long as the difference is greater 
than or equal to the unit cost of the cheapest component. Thus, the number of iterations of the algorithm is not 
predetermined. 

Fig. 4. A flowchart of the availability importance measure-based iterative algorithm. 

3. Results 

In the conducted research, systems consisting of five active components were considered. Each active 
component, with its standby components, creates a 1-out-of-n subsystem. Failure and repair rates of the active 
components are listed in Table 2. Components with lower failure rates were assumed to have lower repair rates, 
resulting in higher expected repair times. This assumption characterizes the situation that a component with a more 
advanced and technologically complex design is able to operate for a longer time without failure, however, it also 
requires a longer repair time. It is further assumed that such a component has a higher unit cost ci. Three variants 
of cost constraints were considered, equal to respectively: ,  and . 

Table 2. Parameters of the components. 

Component Failure rate i Repair rate i Unit cost ci 

C1 0.05 0.30 3.50 

C2 0.10 0.40 3.00 

C3 0.20 0.50 2.00 

C4 0.30 0.80 1.50 

C5 0.70 1.00 1.00 

The number of iterations of the genetic algorithm performed is the same as the number of generations 
determined as one of the parameters. Too low a number of generations with a low population size may result in 
achieving a solution far from the optimum. Fig. 5 presents the values of the best RAP solution achieved in 
successive generations. For the series system (Fig. 5a), with a cost constraint of  and , the genetic 
algorithm found the optimal solutions immediately. Whereas for , after an initial significant increase in the 
value of the objective function, another increase occurred in the 68th generation. Different results were obtained 
for the series-parallel system. According to Fig. 5b, at the latest 59 generations, the algorithm found the optimal 



 

solution for the variant . The complex bridge system proved to be the most difficult problem (Fig. 5c). The 
genetic algorithm gradually approached optimal solutions for all three cost constraints. 

The number of iterations of the AIM-based algorithm depends on the number of standby components allocated 
in the system. Each iteration corresponds to one such component. Fig. 6 presents the computational results of the 
optimization problem achieved using the developed AIM-based algorithm. The trajectory of the value of the 
objective function is monotonically increasing due to the successive enlargement of the system structure. An 
increase in the value of the cost constraint  results in a greater number of iterations performed by the algorithm. 
For the  constraint, AIM-based algorithm for solving the RAP performed 5 iterations in series system and 
series parallel system and 6 iterations for complex bridge system. In contrast, for  and , the number 
of iterations performed ranged from 6 to 9 and 7 to 12, respectively. 

 

Fig. 5. Results of the developed GA for: (a) series system, (b) series-parallel system, (c) complex bridge system. 

Fig. 6. Results of the developed AIM-based algorithm for: (a) series system, (b) series-parallel system, (c) complex bridge system. 

A comparison of the results obtained with the two algorithms is summarized in Table 3. For the series system 
at  and , as well as the complex bridge system at , both the GA and AIM-based algorithm 



 

discovered identical solutions that are assumed to be optimal. In five instances, GA obtained better efficiency by 
finding a solution with a higher system availability value. Nevertheless, in one instance, for a complex bridge 
system and , the AIM-based algorithm was more effective. However, it should be noted that the differences 
in the values of the objective function were low. On the other hand, the AIM-based algorithm required about 36 
times less computational time than GA for all cases considered. This comparison presents a significant advantage 
in computational performance of the proposed approach. 

Table 3. Results of availability optimization in the RAP. 

System Cost 
constraint 

Optimization 
method 

System configuration System availability System cost Computation 
time (s) 

Series C = 20 GA 1  2  2  2  3 0.73106499 19.50 0.8906 

AIM 1  2  2  2  3 0.73106499 19.50 0.0938 

C = 25 GA 2  2  3  2  3 0.88466325 25.00 1.0938 

AIM 2  2  3  2  3 0.88466325 25.00 0.0625 

C = 30 GA 2  2  3  4  5 0.95602546 30.00 1.2656 

AIM 2  2  4  3  4 0.95285811 29.50 0.0156 

Series - parallel C = 20 GA 1  1  1  4  5 0.99922198 19.50 1.6406 

AIM 2  2  1  1  3 0.99470928 19.50 0.0156 

C = 25 GA 1  1  5  1  7 0.99998975 25.00 1.3281 

AIM 3  3  1  1  2 0.99937553 25.00 0.0156 

C = 30 GA 1  1  1  8  9 0.99999988 30.00 1.1406 

AIM 3  5  1  1  1 0.99968094 30.00 0.0156 

Complex bridge C = 20 GA 1  1  4  3  1 0.99835470 20.00 0.9688 

AIM 1  1  3  4  1 0.99833334 19.50 0.0313 

C = 25 GA 1  1  4  5  3 0.99988572 25.00 1.1094 

AIM 1  1  5  5  1 0.99997730 25.00 0.0313 

C = 30 GA 1  1  6  7  1 0.99999915 30.00 1.3438 

AIM 1  1  6  7  1 0.99999915 30.00 0.0156 

4. Conclusions 

In summary, the paper presents two approaches to solving the Redundancy Allocation Problem. The three 
presented systems are widely used in the scientific literature to validate proposed approaches and methods for 
maximizing reliability and availability under an assumed cost constraint. The obtained results confirm the 
usefulness of both algorithms. The meta-heuristic genetic algorithm reaches high efficiency in finding solutions to 
maximize system availability. However, it requires significantly longer computation time compared to the AIM-
based iterative algorithm. Genetic algorithm requires defining basic rules and parameters for selection, crossover 
and mutation. The randomization of initial solutions and the stochastic nature of mutation results in reaching a 
different way of finding the optimal solution each time. In contrast to the GA, the AIM-based algorithm is 
determined without stochastic components. For this reason, the course of changes in the value of the objective 
function in successive iterations is always the same for given assumptions and parameters. 

In future studies, several other assumptions are worth considering. Firstly, the other standby modes (warm and 
hot) should be investigated. This is related to the Markov model, which is the basis for calculating subsystem 
availability values. Secondly, the distributions of times to failure and repair times of components should be 
generalized by developing a semi-Markov model. Finally, testing the developed algorithms on large-scale systems 
can reveal other properties, including the advantages and limitations of the proposed approaches. 
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