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Abstract 

The search for optimal maintenance policies and periodic testing of Safety systems is recurrent in research. In the face of scarce 
and/or non-homogeneous data, approaches based on Bayesian inference are proposed to estimate the parameters of the models. 
This work, whose objective is to optimize the testing strategy of safety system components, makes use of hierarchical Bayesian 
models to make inferences about the failure behavior of safety devices that are installed on an oil and natural gas production 
platform. Evolutionary computation provides more efficient and more successful approaches, where the balance between the 
cost of the maintenance strategy and the probability of failure in demand provides a Pareto boundary. To assist in the choice of 
the optimal point, this work proposes the use of clustering. By means of an application case related to safety components, the 
application of the approach is exemplified and its effectiveness for the situation presented is shown. 
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1. Introduction 

The models that delineate failure behaviors in reliability engineering are essentially grounded in field data, 
controlled experiments, and the expertise of experts. Consideration of the uncertainties inherent in these models 
and data is crucial, as highlighted by (Park et al., 2010). In contexts where monitoring and safety systems need to 
ensure reliability over mission time, reliability estimation during the operational cycle is performed through field 
data and expert opinions, supported by appropriate probabilistic models (Jiang et al., 2020). The selection of these 
models, through inferences, brings with it uncertainties, especially when dealing with non-homogeneous data from 
various sources. In this sense, the Bayesian approach has been employed as a valuable tool, (Droguett et al., 2004; 
Hamada et al., 2008; Kelly and Smith, 2011). Safety devices, subject to hidden failures that only manifest 
themselves during equipment demand or during testing (Taghipour and Banjevic, 2011), require periodic testing 
to ensure adequate levels of availability (Wang and Pham, 2011). However, the search for a compromise solution 
in the quantity of tests, balancing cost, and operational availability, is a challenge addressed through optimization 
(Etemadi and Fotuhi-Firuzabad, 2012; Hokstad et al., 1995; Wang and Pham, 2011).  

Evolutionary methods for multi-objective optimization have been the focus of research over the past decade 
(Coit and Zio., 2019). Such methods return several viable and unmastered solutions, forming a Pareto Frontier 
(Deb et al., 2002; Deb and Jain, 2014; Khalili-Damghani et al., 2014; Raquel and Naval, 2005). However, choosing 
a solution among the many offered by the Pareto Frontier is a crucial decision for the decision-maker. Given the 
potential extension of the frontier, the use of filters to reduce the PF solutions initially proposed has been the 
subject of study, (Bal and Satoglu, 2019; Tavana et al., 2016; Wang and Rangaiah, 2017).  

The selection of an optimal solution to a problem of optimization in the reliability of Safety systems, when 
confronted with an extensive Pareto frontier, represents a significant challenge for the decision-maker. The 
multifaceted nature of the Pareto frontier, which offers a diverse range of unmastered solutions, imposes additional 
complexity on decision-making. The difficulty lies in the abundance of viable alternatives, each representing a 
trade-off between different goals. The decision-maker is faced with the intricate task of weighing trade-offs 
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between conflicting parameters, such as the cost of the maintenance strategy and the probability of demand failure. 
In this context, the choice of solution must meet the specific requirements of the system, highlighting the need for 
effective filtering methods or decision-making strategies that allow for an informed and efficient choice in the face 
of this diversity of alternatives at the Pareto frontier. A comprehensive review of relevant work on Pareto Frontier 
treatment was presented by (Petchrompo et al., 2022), including several reliability engineering works.  

Therefore, this work proposes a hierarchical Bayesian model to model the reliability of safety devices using 
non-homogeneous data populations, application of multiobjective optimization to obtain a set of optimal solutions 
and, finally, the clustering of the Pareto Frontier, to support decision making. 

2. Hierarchical Bayesian Models 

The two-stage Hierarchical Bayesian Model (HBM) is used to capture the uncertainties of the estimation of the 
parameters of interest and the source-to-source variability (Pickard, 1983; Yu et al., 2017). Just like the Maxim 
Likelihood, in the Bayesian approach, HBM models the uncertainty of the sampled data in the priori of the 
parameter, which is sampled from hyperparameters  in a non-informative distribution (Yu et al., 2017). In Figure 
1,  and  are hyperparameters sampled by a non-informative distribution , which allows a wide range of 
values for  and , which leaves  quite generic to capture source-to-source variability. In the upgrade 
phase, the Priori has no great influence on its posteriori. So, the Bayesian update is completely dependent on the 
data (Gelman, 2006). Thus, a posteriori captures the uncertainty of the data and more accurately reflects its true 
value. Using the uniform for non-informative distribution brings the problem of having to work in a break, which 
brings bias and invariability in case of reparameterization. To satisfy Jeffrey's rule, a fuzzy range can be used such 
as (Whistled and Essebbar, 2003; Datta and Ghosh, 1996; Gelman et al., 2004; Hamada et al., 2008; Kelly and 
Smith, 2011), Priori to model data uncertainty, as proposed in (Yu et al., 2017). The Priori can be updated using 
new data to generate a Posteriori of the data of interest. There are three steps. 

 
 
 
 
 
 
 

 
 
 
 
 

Fig. 1. Stages of the construction and updating of the Hierarchical Bayesian Model. 

In the first step, the likelihood of the hyperparameters is obtained by calculating the expected value (or hope) 
of the likelihood of the parameters of interest: 

 (1)
 

In the second step, the a posteriori distribution of the hyperparameters is obtained, using Bayes' theorem: 

   (2) 

The numerical integration of the denominator has been done based on simulations of Markov Chain Monte Carlo 
(MCMC), (Cronin et al., 2010; Link et al., 2002; Qin et al., 2005; Yu et al., 2017), for  and  sampling and joint 
distribution . Then the integrals are approximated by the sample mean of  

In the third step, by marginalizing the parameters  and , the a posteriori distribution of , given the observed 
data, can be obtained. It is also known as an informative posteriori of . The double integral can be approximated 
with MCMC, (Cronin et al., 2010; Link et al., 2002; Qin et al., 2005; Yu et al., 2017), by the sample mean of 

.  

  (3) 

In this way, the update with the arrival of new data can be done by: 



 

  (4) 

Where  is captures the new data every time interval .  
As seen, Figure 1 synthesizes the construction of the Hierarchical Bayesian Model (HBM). Step 1 multiplies 

the likelihood of the parameter  and Priori first-stage, integrating in , which produces the relationship between 
the data from the sources and the parameters  and  of the Priori first-stage, i.e., the likelihood between the data 
and the parameters of the Priori first-stage stage. In step 2, according to Figure 1, the distribution of the parameters 

 and  is multiplied by the likelihood between the data and the parameters of the Priori first-stage, the parameters 
 and  are marginalized by applying Bayes' theorem and and integrating the denominator in  and  using 

MCMC. In the third step, as Figure 1 , relate to the distribution of 
Posteriori to  and  from the Priori of the first stage to produce the distribution to Posteriori of the parameter .  

3. Probability of failure on demand modeling with a Hierarchical Bayesian Model 

Safety systems typically remain in standby mode and act on demand to mitigate or eliminate risks associated 
with unwanted events. Therefore, such systems and their components are subject to hidden failures, (Eisinger and 
Oliveira, 2021; Hokstad et al., 1995; Moubray, 1997; Taghipour and Banjevic, 2011; J. Wang et al., 2017). More 
broadly in the literature, the failure modes of safety systems can be classified into four types: 

 Dangerous failures revealed  
 Hidden Dangerous Failures  
 Secure failures revealed  
 Hidden Safe Loopholes  

Dangerous failures lead to the loss of the safety function. This means that the risk arising from an unwanted 
event will not be mitigated and the respective safety barrier will fail. Safe failures, in the first instance, bring 
operational disruption and eventual production losses, but do not affect the safety function. Revealed failures are 
evident as soon as they occur or are detected via self-diagnostics that some safety devices have, (Ponte Junior, 
2015). Hidden failures become apparent only when the safety function is demanded, since the safety device 
remains in standby mode, (Moubray, 1997; Ponte Junior, 2015). In the latter case, the safety function may be 
required either in a real situation or in a test. Failure rates  of safety devices can be determined 
based on field data, databases, expert experience, technical documentation from manufacturers, and more. These 
rates are measured in the number of failures per unit of time. 

In this work, the interest lies in the hidden dangerous failures . Hidden failures are discovered only in 
real-world demand situations or in testing, addressing the frequency of component failure, periodic component 
testing, and unavailability due to eventual repairs.  

Typically, the reliability of safety devices is modeled, according to Equation 5, using constant failure rate, 
(Kumamoto, 2007; Rausand, 2014; Stamatelatos and Dezfuli, 2011).  

  (5) 

The metric of interest in safety system modeling is the PFD, which is obtained by calculating the steady-state 
availability of the safety function. The PFD depends on the failure rate of the components and the periodicity of 
testing. According to (Lewis et al., 1994; Rausand, 2014; Smith, 2011), without loss of generality, it is considered 
a non-repairable safety device, with negligible testing time. In this case, availability equals reliability: 

  (6) 

For  periodical test intervals , we have: 

  (7) 

In this modeling, it would be possible to achieve an availability level very close to 1 (or PFD very close to 
zero) just by reducing the test interval. This is not reasonable in practice, as it would require an impractical amount 
of work from the maintenance team. In addition, some devices are out of operation during testing (Ponte Junior, 
2015), which would leave such devices unavailable most of the time due to excessive testing. Then two parcels 
are included in the template. The first is related to the time  in which the safety device is unavailable due to 
the test, while the second is related to the average repair time, , of the safety device if a failure is found during 
the test. The formulation that best represents availability is as per Equation 8.  

  (8) 



 

Safety systems are arrangements of safety devices or equipment. Then it is necessary to model the availability 
of these systems, based on the individual availability of the devices or equipment. The equation for the availability 
of a system follows the same construction logic as the equation for the reliability of the system, (Lewis et al., 
1994). In both cases, the topology of the system will reflect equally in the mathematical modeling. For example, 
for  serial devices, the availability of the system as a function of the test periodicity is as follows: Equation 9: 

  (9) 

And in the case of parallel items, we have Equation 10: 

  (10) 

There are other arrangements of safety devices or equipment besides the serial and parallel arrangement. It is 
common to design Safety instrumented systems with redundancies and voting. The most common application of 
voting logic is two out of three or 2oo3 (2 out-of-3), (Rausand, 2014). In this case, two devices need to report the 
abnormality in the variant of interest for the system's safety function to be triggered. The availability of the system 
is obtained by applying the Binomial as a function of the test policy and failure rates of its components, and its 
probabilistic complement corresponds to the PFD. Therefore, it is important to determine the best test intervals for 
safety system devices. 

According to (Kelly and Smith, 2011; Hamada et al., 2008; Babaleye et al., 2019), the most common 
application for Hierarchical Bayesian Models is in the use of several similar sources of data, where the interest lies 
in modeling source-to-source variability.  

In the methodological procedure proposed in this work, the Binomial distribution is applied to model the 
behavior of each data source, where the number of failures  follows a Binomial with  data (demands) and 
parameter  (probability of failure). To have a hierarchical model for the parameter , a first-stage priori 
distribution is specified. In the specific case, to work with a conjugate, you choose the distribution . 
However, it is not compulsory to work with a  conjugate priori. It is therefore necessary to infer the 
parameters  of the first-stage priori. Such an inference is carried out by a second-stage priori distribution, or 
hyperpriori. In the area of Safety and reliability analysis, the use of two-stage models is predominant, although 
there are no limitations for further stages, (Babaleye et al., 2019; Hamada et al., 2008; Kelly and Smith, 2011; Yu 
et al., 2017).  

To have a population variability updated by the different sources, the parameters can be inferred by a diffuse 
distribution known as the Jeffrey distribution, (Whistled and Essebbar, 2003; Datta and Ghosh, 1996; Gelman et 
al., 2004; Hamada et al., 2008; Kelly and Smith, 2011), which plays the role of the second-stage priori. It is not 
imperative to use Jeffrey, as it will depend on the application. The goal of  and  parameter inference is to have 
up-to-date population variability for different data sources. The second-stage Priori is also important to establish 
dependence on the parameters  and . With the observed data, a posteriori will reflect this dependency. In turn, 
the Binomial parameter  is inferred by the first-stage Priori distribution, which is a Beta distribution with the 
parameters  and . The index  corresponds to each of the data sources, and the value  corresponds to the total 
number of data sources. Knowing the future number of demands and the probability of a failure given demand, in 
each data source, it is possible to make predictions about the number of failures in the next demands. 

The failure probabilities of data sources are conditionally independent given the values of the  and  
parameters. The posteriori predictive distribution for  represents source-to-source variability. The predictive 
distribution of  will be given by the mean of the a posteriori distribution of , conditioned by the Beta distribution 
of parameters  and , weighted by the a posteriori distribution for  and , according to Equation 11.  

 (11) 

Where: 
 is the vector of the number of failures for each data source. 
 is the number of tests performed on each data source. 
 is the predictive binomial parameter of each data source. 

 
This corresponds to: 

 (12) 

Here we have the  distribution of variability from source to source. This is the marginal distribution a posteriori. 
From this distribution, it is possible to estimate the number of failures in the next demands in each of the sources. 
The following is the a posteriori predictive distribution by Equation 13: 

 

  (13) 



 

 
Where  is the parameter of the mediated predictive binomial distribution, i.e., global. 

To estimate how many  failures will occur in the set of sources in the next  demands, the predictive 
distribution is obtained, according to Equation 14: 

   (14) 

It is possible to update the Hierarchical Bayesian Model with the arrival of new data. If conjugate priori is used, 
there is no need to infer the parameters of this priori with the MCMC. The update is made from the first-stage 
priori parameters, according to Equations 3 and 4. 

The output of the Hierarchical Bayesian Model is the failure rate for each data source and the overall failure 
rate for all data sources. These rates will feed the reliability model in the next step to obtain the system's PFD. The 
predictions of the number of failures made by the Bayesian model will be compared with the field data. According 
to (Montgomery and Runger, 2014), Pearson's correlation coefficient below  usually indicates a weak 
correlation, if it is greater than , it usually indicates a strong correlation. This modeling must be able to handle 
non-homogeneous data and deal with data scarcity. 

4. Case study 

In oil and gas drilling, production, processing, or refining activities, it is possible to have the accidental 
presence of flammable, asphyxiating or toxic gases in the process plant environments. Production systems are 
designed and maintained in such a way as to avoid the presence of these gases. But, if this presence occurs, the 
gases must be detected by fire and gas detection devices designed for this. Some detector models have 
electrochemical sensory cells that respond to the stimulus of the presence of gas, transforming the chemical 
response into a direct current electronic signal of 4 to 20 mA. To perform this function reliably, the detectors need 
to be periodically tested and calibrated. Tests are necessary to know if the detectors are responding reliably to the 
actual concentration of the gas, if they are reporting a presence greater than the real one or less than the real one, 
in parts per million (ppm). There is an acceptable range of response of the detector to the stimulus of the presence 
of the gas. If the detector responds above the actual gas concentration, it is a sure failure. On the other hand, if the 
detector responds below the actual gas concentration, it is a dangerous failure. The loss of calibration is considered 
a hidden failure, since its occurrence is not evident to the operators, and is therefore perceived only in tests, or in 
a situation of real demand, and it is a protective function, according to (Moubray, 1997). After each test, the 
detector is compulsorily recalibrated and returns to operating in the acceptable response range, close to the ideal 
response. As a premise of this work, the recalibration action of the detector is considered "as good as new", that 
is, the calibration of the detector returns to the initial level of reliability. In this case study, the premise of perfect 
testing is adopted, i.e., the occurrence of calibration loss, the test will certainly detect this failure.  

The detectors are installed throughout the entire process plant, in different areas. Each area is subject to a 
different environmental condition, which interferes with the loss of calibration of the detectors, as has been 
observed in professional experience of the authors. Therefore, depending on the area in which the detector is 
installed, it will have a different dangerous hidden failure rate, . Each area of the plant studied will have a 
calibration loss (hidden fault) modeling for their respective detectors. In each area, the detectors are grouped into 
1ooN or 2ooN voting, depending on the design requirement. Each voting is designed to detect the presence of a 
gas cloud. The calculation of the probability of demand failure (PFD) will be done at the voting level, since the 
vote must inform the presence of the gas and its failure leaves the protection function unavailable, that is, it does 
not confirm the presence of the gas. Another important point is the level of difficulty of access to the detector for 
interventions, such as testing and calibration. Depending on the height from the ground, access can be easy, 
medium, or difficult. This impacts the testing and calibration time, therefore, the time in which the detector is 
unavailable, as well as the preparation time to perform the service and the demobilization of the team after 
completion. The sequence of steps of this work is illustrated in the Figure 2. 

 
 
 
 

 
 

Fig. 2. Methodological procedure of this work. 

 
 
 



 

 
 
According to Table 1, the field data were divided into three samples, according to the time window in which 

they were obtained: 

Table 1. Field data samples used to build the Hierarchical Bayesian Models. 

 
HBM was applied to the first sample, updated with the second sample. The failure prediction of the first HBM 

was purchased with the field data of the second sample, as Figure 3. Then, the predictions of the updated HBM 
model were compared with the field data of the third sample, as Figure 3. 

 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. (a) comparison between the number of failures predicted by the initial HBM and the number of failures observed in the field; (b) 
comparison between the number of failures predicted by the updated HBM and the number of failures observed in the field. 

 
As HBM is updated with the addition of new data, the individual population metrics converge to the global 

metrics, due to the reduction of source-to-source variability, including the first-stage parameters and a priori. The 
Table 2 shows this behavior for the failure rate. The mean value and standard deviation of the failure rates are 

evidenced, as well as the failure rates at the credibility threshold of 97.5%. 

Table 2. Detector failure rates for each plant area in the initial and upgraded HBMs. 

Failure 
rate 
(1/hours) 

Initial HBM First update of HBM Second update of HBM 
Mean Standard 

deviation 
97.5% 
(cred) 

Mean Standard 
deviation 

97.5% 
(cred) 

Mean Standard 
deviation 

97.5% 
(cred) 

 4.84E-
5 

1.60E-5 8.33E-
5 

1.05E-4 1.04E-5 1.26E-4 1.11E-
4 

8.44E-6 1.28E-
4 

 8.22E-
5 

3.24E-5 1.59E-
4 

1.06E-4 1.07E-5 1.28E-4 1.09E-
4 

8.46E-6 1.26E-
4 

 7.49E-
5 

2.39E-5 1.29E-
4 

1.05E-4 1.04E-5 1.27E-4 1.12E-
4 

8.54E-6 1.29E-
4 

 1.32E-
4 

2.55E-5 1.88E-
4 

1.10E-4 1.04E-5 1.31E-4 1.12E-
4 

8.42E-6 1.29E-
4 

 8.21E-
5 

4.11E-5 1.82E-
4 

1.04E-4 1.06E-5 1.25E-4 1.09E-
4 

8.49E-6 1.26E-
4 

 4.23E-
5 

1.62E-5 7.79E-
5 

1.05E-4 1.05E-5 1.27E-4 1.08E-
4 

8.42E-6 1.25E-
4 

 6.40E-
5 

6.95E-6 7.83E-
5 

8.91E-5 7.84E-6 1.05E-4 1.03E-
4 

7.42E-6 1.18E-
4 

 1.11E-
4 

1.55E-5 1.43E-
5 

1.09E-4 1.01E-5 1.30E-4 1.11E-
4 

8.28E-6 1.28E-
4 

 8.30E-
5 

5.5E-5 2.09E-
4 1.03E-4 1.05E-5 1.25E-4 1.09E-

4 
8.47E-6 1.26E-

4 
 

Area 
 

First sample Second sample Third sample 
Tests Failures Tests Failures Tests Failures 

1 79 6 27 7 24 8 
2 18 3 8 4 4 1 
3 42 9 22 6 14 7 
4 105 29 51 16 31 11 
5 6 1 3 1 3 1 
6 71 4 16 5 8 1 
7 635 81 247 31 174 27 
8 231 51 90 24 54 14 
Total 1.187 181 464 94 312 70 

Pearson r = 0.9893; p-
value =  

Pearson r = 0.9728; 
p-value = 



 

The next step is to obtain the Pareto Boundary. The Multiobjective Particle Swarm Optimization based on 
Crowning Distance (MOPSO-CD) will be used, as per (Raquel and Naval, 2005). The PFD of each of the 16 
detector votes (koon) will be minimized, Equation 15, and the total work required to perform the tests and 
calibrations, Equation 16. In this way, there are 16 objective functions in total. The decision variables are the  
periodicities in which the detectors in each  area will be tested and calibrated.  

 (15) 

 
 and  

 (16) 

The MOPSO-CD parameters used in this multi-objective optimization are shown in Table 3: 

Table 3. Parameters used in MOPSO-CD for optimization. 

Objective Functions: 16 Search space limits (hours): 720 and 8760  
Decision Variables: 8 Mutation Probability: 0.5 
Population: 100 individuals Inertia Weight: 0.4 
Generations: 1000 Acceleration coefficient : 2 
External solution repository size: 100 Acceleration coefficient : 2 

 
After the application of MOPSO-CD, a Pareto Frontier of 16 objectives and 100 non-mastered solutions was 

obtained. However, as previously mentioned, it is not feasible for decision-makers to analyse the Pareto Frontier 
and choose the best solution. To facilitate the choice of the most appropriate solution to implement the detector 
testing and calibration strategy, the Pareto Frontier will have its solutions clustered. 

The division into clusters in k-means occurs by minimizing the sum of squares, that is, by the Euclidean 
distance from the points to the centroid of each of its clusters, as (MacQueen, 1967). Among the diversity-based 
Pareto boundary filtering methods, according to (Petchrompo et al., 2022), k-means is by far the most widely used. 
This fact is confirmed in (Lal and Datta, 2019; Mahdavian et al., 2017; Sato et al., 2019; Taboada et al., 2007; 
Taboada and Coit, 2007). K-medoids shows up as an alternative to k-means, as (Reynolds et al., 2006; Schubert 
and Rousseeuw, 2019; Schubert and Rousseeuw 2021), where, after finding a set of k medoids, k clusters are 
constructed by assigning each observation to then nearest medoid. The k-means has centroids that do not 
necessarily coincide with any of the points in the cluster, while the k-medoids indicate which point is the medoid 
of each cluster, (Petchrompo et al., 2022). 

In the present case study, for clustering via k-medois, the solutions of the Pareto Frontier are the observations, 
and the objectives are the analysis variables. Of the 16 total objectives, 15 of them correspond to the PFD of each 
vote, which varies between 0 and 1. The other objective is the Annual Work in man-hours and does not vary from 
0 to 1. Thus, the first step was to divide all the Annual Work values by the highest Annual Work value of the 
respective Pareto Frontier, to vary between 0 and 1 as well. Another way, often found in the literature, is to 
standardize the variables by applying the ZScore, making the variables mean 0 (zero) and standard deviation 1 
(one). Next, the Elbow test is done to find out the optimal number of clusters, (Abdulhafedh, 2021; Kodinariya 
and Makwana, 2013; Sinaga and Yang, 2020; Syakur et al., 2018; Wu, 2012), in case the decision-maker does not 
want to choose a priori the number k of clusters. Pareto Frontier solutions are grouped into clusters and medoids 
are identified. To verify which objectives did or did not influence the definition of at least one cluster, the analysis 
of variance test, better known as ANOVA, is applied. 

The result was the division of VT into three clusters: a bolder cluster, which prioritizes job reduction, a more 
conservative cluster, which prioritizes safety, and a more moderate cluster, which establishes a more interesting 
trade-off between safety and work demanded.  

The Table 4 4 shows the result of the ANOVA test applied to the clusters. If the null hypothesis is rejected, it 
means that that criterion was relevant in the partitioning of the clusters. If the null hypothesis is not rejected, it 
means that that criterion was not relevant in the partitioning of the clusters. The higher the value of the F statistic, 
the greater the contribution of that criterion to the formation of clusters. 

 
 
 
 
 
 
 
 



 

Table 4. Results of the ANOVA test performed on Pareto Frontier clusters. 
Area Voting Statistic F P-value 

 
Hypothesis 

1 2oo3 6.27 2.76E-03  Alternative: PFD contributes to forming a cluster 
1 1oo1 6.30 2.69E-03  Alternative: PFD contributes to forming a cluster 
2 2oo2 11.30 3.88E-05 Alternative: PFD contributes to forming a cluster 
3 2oo2 11.29 3.91E-05  Alternative: PFD contributes to forming a cluster 
3 2oo4 13.43 7.08E-06 Alternative: PFD contributes to forming a cluster 
4 2oo7 10.75 6.08E-05 Alternative: PFD contributes to forming a cluster 
4 2oo8 11.11 4.52E-05  Alternative: PFD contributes to forming a cluster 
5 1oo1 2.86 6.19E-02 Null: PFD does not contribute to cluster formation 
6 2oo4 0.84 4.35E-01 Null: PFD does not contribute to cluster formation 
7 1oo3 110.90 <2.00E-16 Alternative: PFD contributes to forming a cluster 
7 2oo2 284.40 <2.00E-16 Alternative: PFD contributes to forming a cluster 
7 2oo2 283.30 <2.00E-16 Alternative: PFD contributes to forming a cluster 
8 2oo2 2.88 6.12E-02 Null: PFD does not contribute to cluster formation 
8 2oo2 2.88 6.11E-02 Null: PFD does not contribute to cluster formation 
8 2oo2 2.88 6.11E-02 Null: PFD does not contribute to cluster formation 
Work 322.7 <2.00E-16 Alternative: Work contributes to forming a cluster 

 
K-medoids provides k best solutions, corresponding to k Clusters. That is, the decision-maker can analyse only 

the centroid solution of each cluster, instead of analysing the entire PF. The Table 5 shows the optimal solutions 
that are centroids of the three clusters: 

Table 5. Centroid solutions of the three clusters of the Pareto Frontier 
Area Voting Objective Conservative cluster Bold cluster Moderate cluster 
1 2oo3 

PFD 

7.39E-2 7.34E-2 7.30E-2 
1 1oo1 1.67E-1 1.66E-1 1.66E-1 
2 2oo2 3.84E-1 3.14E-1 3.59E-1 
3 2oo2 3.91E-1 3.19E-1 3.65E-1 
3 2oo4 8.92E-4 2.26E-3 8.56E-4 
4 2oo7 1.25E-4 1.72E-5 7.20E-5 
4 2oo8 2.40E-5 2.42E-6 1.27E-5 
5 1oo1 2.81E-1 2.88E-1 2.83E-1 
6 2oo4 4.84E-3 2.29E-3 7.19E-3 
7 1oo3 1.25E-4 4.70E-3 3.33E-4 
7 2oo2 9.86E-2 3.07E-1 1.35E-1 
7 2oo2 1.01E-1 3.08E-1 1.36E-1 
8 2oo2 4.30E-1 4.62E-1 4.10E-1 
8 2oo2 4.31E-1 4.62E-1 4.10E-1 
8 2oo2 4.31E-1 4.62E-1 4.11E-1 
 Annual Work (man-

hours) 
3321 1409 2571 

 
The choice of the most suitable solution among the three of the Table 5 it is at the discretion of the decision-

makers, respecting the Safety Integrity Level (SIL) limits for each PFD, where it exists.  

5. Final thoughts and recommendations 

The general objective was achieved, as a methodological procedure was proposed to optimize the testing 
strategy of a Safety system with hundreds of components, divided into areas and votes.  

In relation to the Hierarchical Bayesian Model approach, already established in the literature, to infer the failure 
behavior of the safety systems under study, the modeling proved to be concise and scalable for the failure behavior 
of the components of a Safety system. The Hierarchical Bayesian Model was updated as new field information 
arrived, dealing with non-homogeneous data, without losing the ability to predict. It should be noted that, in the 
comparisons between the predictions made by the model before and after the first update and the validation 
samples, the correlation remained high. These results ratified the efficacy of the Bayesian model in the treatment 
of non-homogeneous data, uncertainties, and source-to-source variability, enabling high prediction capacity, with 
reliable representation of what occurs in the field. In terms of gain in scale, the use of Hierarchical Bayesian 
Modeling can be adopted in other types of systems subject to hidden failures and periodic testing. Additionally, as 
an improvement in the inference step of the failure parameters of the model, a homogeneity test can be applied 
between the various data sources, to verify the real need to apply Hierarchical Bayesian Modeling. 

The goal of supporting decision-making in various scenarios was also achieved. The clustering of non-mastered 
solutions produced by k-medoids assured the decision-maker that the preferred solutions bring a very balanced 
compromise between safety and work, prioritizing and ensuring safety. The decision-maker will have no difficulty 
in analysing and deciding on the best solution. Additionally, the decision-maker does not have to bring information 
a priori to the treatment of the Pareto boundary, mitigating the degree of subjectivity of the decision-making 
process. 



 

A limitation to the case study model to be listed is the failure to consider the aging of safety system devices, 
when modeling their reliability and PFD with a constant failure rate in an exponential model. With the use of 
approaches such as the Non-homogeneous Poisson Process (NHPP), it is possible to model the aging failure 
behavior of safety devices. The application of Markov chains can assist in this process. It is emphasized that this 
limitation does not impose restrictions or impact the proposed methodological procedure, which is the objective 
of this study. 
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