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Abstract 

Machining, a commonly employed production method, faces specific challenges like chatter and severe tool wear, which 
have the potential to disrupt the manufacturing process. Detecting tool wear state in machining is crucial to identify before its 
value reaches the threshold limit, to ensure surface quality, productivity, and prevent workpiece degradation. The detection of 
tool wear states in machining, identified by unbalanced vibrations during machining, shows difficulties in handling through 
traditional approaches due to its non-stationary and complicated nature. To tackle these challenges, this study employs time-
frequency methodologies to convert signals into spectrogram images, specifically for four states related to the condition of 
cutting tools: initial wear, steady state wear, severe wear, and worn-out. This research suggests examining the spectrogram 
parameters' impact on the successful classification of tool wear states during machining, utilizing the architecture of CNN-
MobileNet model. This deep learning technique allows for the automatic and precise identification of intricate fault patterns, 
thereby improving the effectiveness of fault detection methods. The study employs a milling dataset comprising three cutters 
C1, C4, & C6, and utilizes the CNN-MobileNet architecture to assess the variation of spectrogram parameters  impact on 
validation loss and accuracy wear state classification. The vibration signals are first transformed into spectrogram 
images, and then a systematic analysis is performed to assess the impact of different DFTs points, overlapping percentages, 
and windows sizes on fault classification accuracy. This analysis is carried out across three cutting tools. The findings 
suggest optimal parameter configurations for spectrograms, ensuring a fault classification accuracy within the range of 95-
96%. The significant contribution of this study lies in offering a thorough examination of parameter impact on the accuracy 
of wear states detection, and help in preventing the cutting tools catastrophic failure. The paper's results focus on the 
meticulous selection of spectrogram parameters for the accurate detection of tool wear states, providing valuable insights. 
This study aims to support industries in improving the reliability of their machining operations, addressing issues related to 
economic consideration, quality assurance and safety. 
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1. Introduction and literature survey 

Machining is a crucial process in the field of manufacturing industries, executed through the precise cutting 
tools. During machining, the cutting tools experience extreme wear and degradation due to mechanical, thermal, 
and chemical stresses. As a result, the poor quality of the machined surface and higher tolerance errors are 
observed during machining processes that are milling, drilling, and turning (Yang and Li, 2018; Zhang et al., 
2022). This study mainly focuses on milling which is an intermittent machining process, utilizing a multi-flute 
cutter that induces temperature variations and vibration at the cutting edge (Li et al., 2023). The vibration 
generates a dynamic wave at the tool edge, resulting in poor surface finish. The wear of the cutting tools might 
cause excessive vibration during machining, which can impact the material removal rate and perhaps lead to 
tool s tip failure (Bai et al., 2023). Hence, to mitigate the adverse effects of tool damage on the machining 
process, detection of cutting tool  wear state through online monitoring systems is essential. An effective 
condition monitoring system can reduce downtime by 10 40% and enhance workpiece quality (Peng et al., 
2020). 

An accurate assessment of the tool wear state can be performed in real-time by examining several signals 
such as cutting force, vibration, acoustic emission, and spindle motor current. The signals are further used to 
extract features in the time, frequency, and time-frequency domains (Entezami 2021). Subsequently, these 
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features encompass various decision-making algorithms to assess the status of the cutting tools. Patange et al., 
(2021) proposed a machine learning method to determine the state of a milling cutter by using selected 
significant features from a decision tree and classified using a random forest tree technique for various tool 
conditions. The vibration signal is used to extract statistical features, and then dimensionality reduction is 
performed using the J48 classifier (Bajaj et al., 2021; Khade et al., 2021). Kothuru et al. (2018) employed 
acoustic signals in the frequency domain to develop a multiclass support-vector machine (SVM) for detecting 
tool wear in end milling. In a similar manner, Hu et al. (2019) classified tool wear into four distinct states by 
considering mechanisms, wear rate, and tool life and utilized a v-SVM model to achieve efficient monitoring of 
tool wear. It is evident that vibration signals in tool wear often exhibit dynamic behaviour and non-stationarity, 
making them challenging to handle using traditional time and frequency domain-based statistical features. 
Hence, to handle this challenge Karabacak (2023) employed spectrograms for classifying tool wear states, 
leveraging their utility in extracting relevant features from signals generated during machining. Experimental 
results have shown that spectrogram image-based methods provide high diagnostic accuracy for bearing fault 
signals in complex conditions of variable rotational speeds (Pham et al., 2020) and under low Signal-to-Noise 
Ratio (SNR) levels (Jiang et al., 2021). Specifically, features derived from spectrogram images play a crucial 
role in assessing machining stability, as they effectively capture the rise in energy allied to tool wear (Kale et al., 
2023).  

A significant gap identified in the existing literature while using spectrogram images is their consistent time-
frequency resolution across all types of signals. The lack of variation in this context presents challenges in 
accurately resolving ultra-band and wide-band signals, perhaps resulting in inadequate spectrogram resolution 
(Lukin and Todd 2006). Because of this, the selection of an optimal windows size, overlap percentage, and 
discrete Fourier transform (DFT) points are very important in the spectrogram image-based fault diagnosis 
(Muller et al., 2011). The window size determines the balance between time resolution and frequency resolution 
in the spectrogram, where, larger window size provides better frequency resolution but lesser time resolution, 
and vice versa (Leiber et al., 2022). The size of the window can also impact the effectiveness with which specific 
signal characteristics are captured. For example, a greater window size could be more effective in capturing 
lower frequency elements, whereas a smaller window size might be more suitable for capturing higher frequency 
components. When applying spectrograms to short signals, achieving a balance between the window size and the 
degree of pixelation along with the time axis is crucial. This balance can be attained by incorporating 
overlapping parameters (Zhang 2019). Enhancing the overlap by 50% or 90% increases the visual clarity of 
information, but does not boost the resolution, which is determined by the quantity of DFT points. The number 
of DFT points determines the frequency resolution of the spectrogram (Malarvannan et al., 2023). Hence, 
examining the correlation among window size, overlapping, and number of DFT points is essential for 
maximizing accuracy of wear states classification and establishing selection of parameters, which is found 
limited in the reviewed literature. In addition, spectrogram images are commonly classified using convolutional 
neural networks (CNNs) because of their capacity to efficiently acquire spatial hierarchies of characteristics 
(Kumari et al., 2021). Therefore, this research employs the MobileNet architecture (Peng 2023) because of its 
advantage of being lightly loaded with parameters and rarely utilized in the classification of wear states in 
cutting tools. 

The main contribution of the paper is to scrutinize the main effect and interaction effect of windows size, 
overlap percentage, and number of DFT points on validation loss and accuracy of wear state classification. This 
specific aspect has been inadequately addressed in the current literature concerning the classification of cutting 
tool wear states. This research paper additionally contributes to the field of CNN-MobileNet architecture based 
comprehensive image classification, and it demonstrates an analysis to evaluate spectrogram parameters' impact 
on the accuracy and validation loss of tool wear states classification model. This paper further investigates the 
outcomes through the utilization of main and interaction effect plots. Then, these plots are used to provide 
recommendations for optimal parameter settings and also explore the influence of parameter variations on 
validation loss and mean accuracy. 

Therefore, this paper proposes a comprehensive approach for indicating the appropriate spectrogram image 
parameters that are selectively improved to capture the tool wear state during machining with utmost accuracy. 
The analysis of tool wear severity in machining tools using spectrogram parameters are likely to benefit the 
scientific community and industries to prevent tool breakage and extension of tool lifespan. This will certainly 
decrease the cycle time of machining processes, resulting in improved productivity and throughput. 

The forthcoming sections are organized in the following manner: Section 2 outlines the proposed 
methodology, Section 3 provide results and corresponding discussion, while Section 4 offers the conclusion for 
the paper. 



   

2. Methodology 

The proposed methodology begins with the acquisition of the milling dataset on tool wear, which is subjected 
to preprocessing and categorized into four distinct labels, as illustrated at Figure 1. Subsequently, spectrogram 
images are derived from the dataset, employing diverse parameters such as windows size, overlap percentage, 
and number of DFT points. The dataset is then partitioned into training and testing sets, serving as inputs for the 
CNN-MobileNet architecture (Peng 2023) model designed for classification purposes. Finally, a comprehensive 
accuracy and validation loss analysis is conducted to assess the performance of the model across various 
configurations of spectrogram parameters. 

 

 

Fig. 1. Proposed methodology. 

2.1. Dataset description 

The proposed methodology in this paper is verified by utilizing the 2010 PHM Data Challenge dataset 
(Xinghui Li 2021; Li et al., 2009), which originated from experiments conducted under consistent operating 
conditions. The experimental configuration, as depicted in Figure 2, utilized a three-flute ball nose tungsten 
carbide milling cutter, with operational parameters detailed in Table 1. Cutting forces along the x, y, and z axes 
are gauged through a three-component platform dynamometer strategically positioned between the workpiece 
and the machining table. Concurrently, machine tool vibrations during cutting are monitored utilizing three 
accelerometers affixed to the workpiece, capturing vibrations in the x, y, and z directions. Simultaneously, an 
acoustic emission sensor captures the sound emanating from the cutting process. The acquired vibration, force, 
and acoustic emission signals undergo preprocessing via a charge amplifier and data acquisition system before 
being transmitted to the PC. The data acquisition system functions at a sampling rate of 50 kHz. Following each 
surface machining operation, the flank wear of each flute is measured, with seven channels capturing signals, 
and the flank wear is designated as the target value. 

 
Table 1. Experimental parameters 

Spindle speed Feed Rate Radial Depth of Cut Axial Depth of cut Sampling Frequency  
10,400 rpm 1555 mm/min 0.125 mm 0.2 mm 50KHz 

 
In this investigation, we are focusing on the vibration signal for further analysis, as it is a widely recognized 

indicator used by many researchers for tool wear state classification. The directory of this dataset encompasses 
around 315 distinct data-log files, each corresponding to an individual cutting operation. Each operation includes 
a 'wear' file documenting the wear measurement after each cut, rounded to the nearest  mm for six cutters, 
namely C1, C2, C3, C4, C5, and C6. In datasets C1, C4, and C6, wear measurements for the three flutes are 
concurrently recorded, while other datasets lack this information. Consequently, records from C1, C4, and C6 
are suitable for classifying the tool wear states. Further to this, data are segregated and divided into 80% for 
training and 20% for testing. 

Additionally, the signals undergo preprocessing and are classified into four distinct labels. These labels are 
defined according to the wear rate profile (Hu et al., 2019). In this paper, tool wear is categorized into four states, 
as depicted in Figure 3 for cutter C1. State 1 encompasses 1st to 25th cut, characterized by initial wear rate at the 
start of the operation. State 2 spans 25th to 154th cut, indicating steady wear and showing very low rate of wear. 



   

State 3 occurs from 154th to 298th cut, marked by rapid tool wear with a rate exceeding 0.002 mm/cut number, 
reaching 0.0045 mm/cut number before tool failure. Finally, State 4 is defined from the 298 th to the 315th cut, 
where tool wear surpasses the tool life criterion i.e., 165mm, signifying tool wear-out. Similarly, for the other 
cutters C4 and C6, the states are illustrated in Table 2 along with their respective tool wear values. 

After categorizing tool wear states, spectrogram images are produced by utilizing vibration signals. The 
subsequent section provides an explanation of the Short-Time Fourier Transform (STFT) spectrogram utilized to 
produce spectrogram images. 
 

 
Fig. 2. Experimental setup (Li et al., 2009). 

 

 
Fig. 3. Represents tool wear states. 

Table 2. Cutting tools wear states limits. 

Wear States ITW (  mm) STW (  mm) HTW (  mm) WT (  mm) 

Cutter C1 <87 87-102 102-165 >165 

Cutter C4 <65 65-104 104-165 >165 

Cutter C6 <106 106-131 131-165 >165 

2.2. Short Term Fourier Transform Spectrogram (STFT) 

The Short-Term Fourier Transform (Kehtarnavaz, 2011) is a technique employed for signal analysis in both 
the time and frequency domains. The process entails dividing a signal in the time domain into smaller sections, 



   

usually with the use of a windows function, and subsequently calculating each segment Fourier transform to 
expose its frequency characteristics. The window position is systematically adjusted throughout the complete 
dataset to compute Short-Time Fourier Transform coefficients at different locations of time-frequency plot. 
These standardized squared magnitudes of coefficients are commonly visualized as a spectrogram. The 
spectrogram serves as a visual representation illustrating the distribution of the energy of the signal across 
various frequencies with time. The STFT can be mathematically expressed as follows in (1). 

                                                                                                     (1) 

The expression S(t, f ) denotes the coefficients of STFT at a certain frequency f and time t. The input time-
domain signal is represented by s( ), while w( -t) represents a windowing function. The imaginary unit is denoted 
by j, and the integration is conducted over all time values denoted by .  

This study investigates the influence of spectrogram characteristics, including windows size, overlap 
percentage, and number of DFT points, on the precision of a wear states classification model. Table 3 represents 

 this paper. 

Table 3. Spectrogram parameters levels. 

Spectrogram parameters\levels Level 1 Level 2 Level 3 Level 4 

Windows size 28 64 100 200 

Overlap percentage - 25% 50% 75% 

Number of DFT points 128 256 512 1024 

Table 4. CNN-MobileNet architecture. 

Type Stride value Filter shape Input size 
Standard convolution 2   
Depthwise separable convolution 1   
Standard convolution 1   
Depthwise separable convolution 2   
Standard convolution 1   
Depthwise separable convolution 1   
Standard convolution 1   
Depthwise separable convolution 2   
Standard convolution 1   
Depthwise separable convolution 1   
Standard convolution 1   
Depthwise separable convolution 2   
Standard convolution 1  

 
 

Depthwise separable convolution 
Convolution 

1   
 

Depthwise separable convolution 2   
Standard convolution 1   
Depthwise separable convolution 2   
Standard convolution 1   
Average pool 1   
Fully connected 1   
Softmax activation function 1 Classifier  

2.3. CNN-MobileNet architecture 

MobileNet is a convolutional neural network (CNN) architecture (Peng 2023) specifically developed to create 
neural network models that are efficient and lightweight as shown in Table 4. It is particularly suitable for 
mobile and edge devices that have low processing resources. MobileNet, developed by Google researchers in 
2017, employs depthwise separable convolutions to decrease the number of parameters and calculations. This 
results in faster inference and a smaller memory requirement compared to conventional CNN architectures. 
Initially, features are extracted through convolution and pooling layers, generating feature maps that capture the 
image's distinctive characteristics. Notably, MobileNet utilizes depthwise separable convolutions, dividing 
standard convolutions into depthwise and pointwise convolutions. Depthwise convolutions apply filters 



   

independently to each input channel, while pointwise convolutions merge results through 1x1 convolutions, 
significantly reducing computational costs while maintaining model accuracy. The feature maps from the last 
convolution layer are then flattened into one-dimensional vectors to facilitate input into fully connected layers. 
The final classification occurs at the output layer, employing a softmax activation function to produce a 
probability distribution over classes, with the highest probability determining the output prediction.  

3. Results and discussion 

The proposed methodology in this paper enables milling datasets to generate spectrogram-based images with 
varying levels of parameters, as outlined in Table 3. Subsequently, the impact of varying windows size on the 
spectrogram images for cutter C1 is depicted in Figure 4, while keeping overlap percentage and number of DFT 
points constant. Similarly, the effects of overlap percentage and number of DFT points on spectrogram images 
are also examined that provide insights into how spectrogram parameters influence image representation. These 
based spectrogram images are then fed into a CNN-MobileNet architecture (Section 2.3) to assess the impact of 
these varying parameters on the validation loss and accuracy of tool wear state classification for each cutting 
tool. In this paper, cross-entropy which is commonly used loss function in machine learning for classification is 
considered as a validation loss function. It is employed to measure the dissimilarity between the predicted 
probability distribution and the actual distribution (Zhou et al., 2019). The subsequent paragraphs explore into 
the observed discrepancies in accuracies and validation loss for these parameters. 

After evaluating the validation loss and accuracy of tool wear states classification, a thorough analysis is 
performed by main effect and interaction effect plots. Figures 5, 6, and 7 represent the main effect plots, which 
are used to evaluate the association between the response variable i.e., validation loss or accuracy, and predictor 
variables i.e., windows size, overlap percentage, and number of DFT points. The information depicted in the 
plots correspond to the response variable means for each discrete combination of factor levels. More precisely, 
Figures 5(a), 6(a), and 7(a) represent the main effect plots of classification accuracies for cutting tool  wear 
states achieved by varying spectrogram parameters with cutter C1, C4, and C6, respectively. The main effect 
plots of validation losses derived from varying spectrogram parameters with cutters C1, C4, and C6 are 
represented by Figures 5(b), 6(b), and 7(b), respectively. When examining cutter C1 in Figures. 5(a) and 5(b), 
the most accurate results and lowest validation losses are obtained at a window size of 200, with 75% overlap, 
and employing 1024 DFT points. These settings outperform other factor levels. Similarly, cutters C4 and C6 also 
exhibit the same main effects as cutter C1 for accuracy and validation loss as shown in Figures 6 and 7.   

The statistics from these figures advise that increasing the windows size, overlap percentage, and number of 
DFT points result in improving accuracy and reducing validation loss for detection of tool wear states. The 
impact of DFT points on fault classification accuracy and validation loss has been found to be nearly negligible. 
Therefore, the influence of different DFT points on the fluctuation of accuracy and validation loss is almost 
insignificant, as evidenced by the practically horizontal lines. It is advisable to validate the conclusions drawn 
from main effect plots by examining interaction plots before making any definitive assessments. Relying solely 
on main effect plots for conclusions may not always be reasonable. The following paragraph will present the 
interaction plots for a more thorough examination.  

The interaction plot in Figure 8(a) demonstrate that cutter C1 achieves the maximum mean accuracies at 
certain combinations: a window size of 100 with a 75% overlap, and DFT points at 512 or 1024. Similarly, in 
Figure 8(b), the interaction plots for mean validation loss show that the minimum validation loss occurs at the 
combination of window size 200, overlap percentage 75%, and number of DFT point 1024 for cutter C1, which 
compliment main effect plots. Similarly, In Figures 9(a) and 10(a), the maximum accuracy is observed at 100 or 
200 window sizes, 75% or 50% overlapping percentages, and 1024 DFT points for cutter C4 and C6. 
Conversely, Figures 9(b) and 10(b) demonstrate the minimum validation loss at a window size of 200, 
overlapping percentages of 50% or 75%, and 1024 DFT points for cutter C4 and C6.  

 



   

 

Fig. 4. Represent effect of windows sizes on spectrogram images where 25% overlapping, 215 DFT points and windows sizes are  

(a) 28, (b) 64, (c) 100, and (d) 200. 

 

Fig. 5. Represent main effect plots of cutter C1 where responses are (a) mean accuracy and (b) validation loss. 

 

Fig. 6. Represent main effect plots of cutter C4 where responses are (a) mean accuracy and (b) validation loss. 



   

 

Fig. 7. Represent main effect plots of cutter C6 where responses are (a) mean accuracy and (b) validation loss. 

 

Fig. 8. Represent interaction effect plots of cutter C1 where responses are (a) mean accuracy and (b) validation loss. 

 

Fig. 9. Represent interaction effect plots of cutter C4 where responses are (a) mean accuracy and (b) validation loss. 

 

Fig. 10. Represent interaction effect plots of cutter C6 where responses are (a) mean accuracy and (b) validation loss 



   

The interaction plot results complement those of the main effect plots, highlighting the pronounced impact of 
window size, while the influence of overlapping and DFT points is comparatively less. DFT points exhibit less 
variability in validation loss and accuracy, evident from the horizontal line pattern. The maximum accuracy 
achieved is 96.79% for cutter C1, 97.01% for cutter C4, and 96% for cutter C6, corresponding to their optimal 
spectrogram parameters. The respective confusion matrices are presented in Figure 11. 

Based on the above corresponding observations, the main effect plots and interaction plots indicate that 
accuracy and validation loss are influenced differently by window size, overlapping percentage, and DFT points. 
These findings offer valuable insights for optimizing the fault classification process under different conditions. 

 

 

Fig. 11. Confusion matrix for tool wear state classification with (a) cutter C1, (b) cutter C4, and (c) cutter C6. 

4. Conclusion 

This study investigates the influence of variation of the spectrogram parameters on the wear states 
classification accuracy and validation loss in machining operations, using three different cutters: C1, C4, and C6 
with same operating conditions. The data collected from milling is transformed into spectrogram images by 
using various windows size, overlap percentages, and number of DFT points. Then, CNN-MobileNet model is 
employed for the classification of tool wear states. Subsequently, accuracies and validation losses are analyzed 
through interaction and main effect plots. These plots provide a clear understanding of how the parameters 
impact accuracies and losses, providing significant insights for parameter selection. 

The main findings of this analysis on tool wear states classification using variations in spectrogram 
parameters can be summarized as follows: 

 the accuracy and validation loss are influenced by the overlapping percentage, windows size, and DFT 
points; 

 the results demonstrated a positive correlation between the increase in overlapping percentage, windows 
size, and DFT points, and the corresponding increase in accuracy; 

 the results demonstrated that augmenting the windows size, incorporating overlapping percentage, and 
increasing the number of DFT points led to a reduction in validation loss; 

 the impact of altering the number of DFT points on the variability of accuracy and validation loss is 
nearly negligible; 

 the utilization of a window size of 100 or 200 in conjunction with 1024 DFT points yielded superior 
accuracies, ranging from 95 to 97%; 

 the analysis showed that using 75% overlapping with 1024 DFTs consistently produced less validation 
losses as compared to alternative overlap percentage options. 

The identified optimal parameter configurations can be employed to effectively identify severe wear states 
through spectrogram images and, simultaneously, minimize validation losses. This has the potential to prevent 
tool breakage by accurately detecting and mitigating heat generation, chatter, uneven forces, induced vibrations, 
and damage to the workpiece surface. This study aims to improve the machining process reliability in industries, 
addressing concerns related to quality, economic factors and safety. Precise cutting tool's wear state detection 
can contribute to enhance the line throughput and reducing process cycle time. 

The future prospects of this research entail enhancing parameters setting for fault diagnosis in milling 
operations, investigating more deep learning approaches, and incorporating real-time monitoring systems into 
machining industry settings. 
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