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Abstract 

This work explores the application of causality in production data, with a specific focus on a dataset that consists of both 
images and machine parameters. Traditional data analysis methods often rely on correlation-based approaches, that cannot 
effectively distinguish between causation and mere association. This research aims at causal relationships within the 
variables, to provide a more profound understanding of the underlying mechanisms that drive production efficiency and 
quality. The primary objective is to identify production failure root causes through causal discovery in terms of causal graph 
identification and inference methodologies in terms of causal graph quantification. For the present work, an evaluation 
scheme of the approach based on failure prediction with anomaly detection is presented that uses only the identified main 
failure root cause production parameters and measurements extracted from images. In addition, the causal approach is 
compared to the most influencing features of state-of-the-art feature selection methods. The work shows that when 
comparing the algorithms NOTEARS, DAS, LinGAM and SCORE for causal graph identification, as well as graph structure 
preserving algorithms using multiple noise propagation or outlier effect generation of noise at single node for causal 
quantification, that the NOTEARS algorithnm achieves the highest balanced accuracy compared to state of the art feature 
selection methods such as SHAP, mutual information regression, ANOVA and RFE when using XGBoost for anomaly 
detection as overall evaluation metric of the failure root cause detection algorithm pipeline. The additional insights generated 
within the causal approach comprise the effect of the number of selected features on the outcome, identification of indirect 
dependencies using causal graphs and radar plots for visualization of the causal influence of the most important subsets of the 
heterogeneous input data. It is indicated how the approach can be further improved and be applied for iteratively improving 
electronic hardware production lines. 
 
Keywords: sensor or hardware production data, failure root cause identification, heterogeneous data, feature extractoin from images, causal 
graph identification, causal graph quantification, set of potential root caues, set of main features, validation through anomaly prediction, main 
feature extraction, metrics for prediction assessment 

1. Introduction 

Sensor hardware and chip production by now is digitalized in the sense that big heterogenous data are 
collected and stored on the level of single production items, i.e. it can be traced on which machine and with 
which machine parameters production steps were conducted as well as related production measurements and 
quality assessment test measurements or images. Many of this big data is already used to adjust the process and 
to decide after each of the up to ca. 100 production steps if quality of item allows for further production, lets 
expect item with somewhat reduced quality or even is production loss. Similar assessments are done at final 
quality assessment step. If production loss is high and/or not understood engineers use stored data to identify and 
mitigate failure root causes, which involves the inspection and statistical assessment of stored data, typically by 
even manually assessing hypotheses or even only educated guesses by production engineers. The latter process 
also takes place in case of major numbers of failure events of components in the field.  

As of now and due the long and successful production history of established production lines most standard 
and not too seldom failure root causes can be expected to be known but to be accepted because of trade-off of 
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cost considerations regarding improvement costs and of costs of current production. However, options for 
improvement include: (i) to faster identify new types of failure root causes, e.g. due to change of materials, 
processes or components, etc.; (ii) to better identify more seldom events such as double failures, tribble failures; 
(iii) to better identify transient failures, e.g. temporary temperature, light condition changes, change of machine 
operating policies or even human inspectors as well as ramp-up or ramp-down effects; (iv) to increase 
explainability of already known failure root causes as well as to quantify their influence to determine additional 
root causes that might be hidden behind main effects; (v) and finally to support existing human manual root 
cause identification processes.  

The present approach follows the conceptual process of Pearl and Mackenzie that causal discovery can be 
structured in nine steps and that the degree or quality of causal discovery can be ranked using three rungs of a 
causal ladder (see (Pearl and Mackenzie 2020), Figure I, Figure 1.2). Key properties of the former are that 
hypothesis testing should be based on causal graphs representing causal relationships, i.e. either observation (or 
measurement, quantity, observable, etc.) depends on another one or not, and vice versa or both as expressed in 
directed graphs as well as causal graph quantification (causal inference) expressing the actual level of 
dependencies, including second order dependencies, etc. The causal ladder concept distinguishes between 
associative, interventional and counterfactual causal relations, which are linked to increasing levels of insights 
(or rungs) from correlation-like causal relations, to causal reasoning regarding system behavior in case of 
defined changes that can be observed, and finally to counterfactual changes that cannot be observed. For 
instance, for a gluing process it can be observed that production failure is strongly correlated to lower 
temperatures of glue (rung 1), intervention analysis could determine effect of temperature (rung 2), and 
counterfactual analysis could assume that temperature variations are completely controlled in production hall 
environments (rung 3) to determine any other effects.  

Regarding mathematical representation, hence the aim of the paper is to find approaches to construct credible 
causal graphs (directed graph) that point to production item failure node from heterogenous production data 
nodes as well as to quantify the causal graphs in terms of dependency strengths or weights of graph arrows, e.g. 
as determined by a corresponding Bayesian network quantifying the causal graph. Note that the latter is only one 
option.  

For validation of the approach, the assumption is made that the causal graph topology, i.e. if a measurement 
node is connected to the item failure node or not, as well as the relative weights of the connection (in case of 
direct connection) or connections (in case of indirect connections) can be used to select production 
measurements that are relevant for prediction of production failure. The corresponding set of measurements is 
identified as set of likely root causes. Goodness of prediction of failure of item from selected root cause 
production data point set is then used as validation of the overall approach using selected prediction evaluation 
metrics. The assumption is that a valid root cause detection approach selects all relevant main root cause 
measurements which then also suffice for anomaly prediction algorithm for good predictions.  

The remaining paper is structured as follows. Section 2 names recent approaches to determine failure root 
causes in chip or sensor production data. Section 3 gives an overview of the present method chain using causal 
approaches including the validation idea in terms of failure prediction with reduced data set. Section 4 gives 
sample results for the implemented approaches and discusses them, also comparing with state-of-the-art feature 
identification approaches. Section 5 summarizes and concludes.  

2. State of the art, gaps and own approach focus 

Failure root cause detection has been applied to chip production data using statistical assessment of at sub-
batch level (Chien and Chuang 2014). The idea of clustering approaches for the identification of failure root 
causes is to cluster production data such that the label production step failed and not failed as well reveals 
additional distinguishing features that are only present in the clustering results in the case of failure, see e.g. (Liu 
and Chien 2013). Also, support vector machine (SVM) (He et al. 2016) or random forest approach (Kim et al. 
2023) are used to classify production data measurements.  

Multi-time series analysis uses as input the heterogeneous production data translated into time series and 
predicts the time history of production step quality with the expectation that changes in e.g. machine parameters 
are signatures of subsequent production failure (Wang et al. 2023b), for instance using convolutional neural 
network (CNN) approaches (Jain et al. 2020). Somewhat similar to multi-time series analysis anomaly 
identification approaches can be used to predict production failure steps, i.e. the expectation is that an anomaly is 
predicted for each production failure step. In this case the set of input data can be reduced to narrow the possible 
root cause data to a subset containing potential root causes.  



   

 

Variations of artificial neural networks (ANNs) used in published literature include autoencoder approach 
(Cha et al. 2022), long-term short-term memory (LSTM) (Kao and Chien 2023), CNN (Nagamura et al. 2021), 
and deep neural networks (Zhang et al. 2022). In these cases, the ANN variation predicts the link between input 
parameters and production step success and failure. The challenge is to extract knowledge regarding causal 
relations from the constructed networks, e.g. in terms of strengths of weights between nodes or by using 
explainable intermediate layers.  

Most of the approaches use a restricted set of data types, e.g. only machine parameters, time series data, test 
measurement data, or only images. In all cases data spotting, preprocessing, and preparation, e.g., normalization 
is conducted. Within this step for instance also principal component analysis (PCA) (He et al. 2016) (Ong et al. 
2015) or feature extraction (Lundberg and Lee 2017) (Beraha et al. 2019) (Shakeela et al. 2020) (Ogunleye and 
Wang 2018) are conducted to reduce the dimensionality of the input data.  

Closest to the present approach is (Wang et al. 2023a), which is however considering image data only and 
only NOTEARS algorithm for causal graph construction as detailed in section 3. Causal root cause detection has 

a, even if the potential has been 
identified and first conceptual solutions have been developed (Fujiwara et al. 2023). 

3. Methodology and implementation 

The present method chain uses as input heterogeneous data including machine parameters, measurement data, 
time-series data, and selected extracted image features, see Figure 1. It follows the idea to first construct a causal 
graph and then to quantify it (causal inference). Based on the main contributions of data features considering 
several graph layers, the main contributing features are extracted (set of key features) that are expected to be 
sufficient within an anomaly approach to predict failure or success of the production step. The anomaly 
prediction with reduced data set is compared with the anomaly prediction with the full data set as well as current 
critical feature extraction algorithms. Note that all of them generate a subset of data features that are believed to 
be relevant for predicting failure or success of the production step. 

 

 
Fig. 1. Causal method chain overview for production failure root cause feature identification and evaluation approaches. 



   

For each step, up to serval distinct algorithms are used for comparison as listed in Table 1, which gives the 
acronym of the approach, short description, references used as well as code sources employed. 

Table 1. Methods used for causal production root cause failure detection and validation. 

Step Acronym, Short description References, Code source used 
Hand-crafted feature extraction 
from images  

E.g. Roundness computation; Open Computer Vision (CV) Python 
library OpenCV;  

e.g. (Sui and Zhang 2012); e.g. 
(Howse and Minichino 2020) 

Data pre-processing and 
normalization 

The dataset is standardized by subtracting the mean value of each 
feature and scaled by dividing by its standard deviation using the 
Python library Scikit-learn.  

(Pedregosa and et al. 2011) 

Causal graph construction Discovery at Scale, DAS, is an extension to SCORE; Dodiscover 
Python library;  

(Montagna et al. 2023) (Li et 
al. 2023) 

Linear Non-Gaussian Acyclic Model, LiNGAM; Independent 
component analysis (ICA) based LiNGAM algorithn in Causal-
learn python library; iterations are limited;  

(Shimizu et al. 2006) (Zheng 
et al. 2023) 

SCORE, Score matching of non-linear additive noise models; 
Dodiscover Python library 

(Rolland et al. 2022) (Li et al. 
2023) 

NOTEARES, Non-combinatorial Optimization via Trace 
Exponential and Augmented lagRangian for Structure learning 

(Zheng et al. 2018b); (Zheng 
et al. 2018a) 

Causal graph quantification 
(Causal inference) 

Intrinsic causal cause quantification. A Gaussian noise term is 
introduced to each node and its contribution to the output node is 
quantified.  

(Janzing et al. 2020); 

Causal structure-based root cause analysis of outliers assessing 
outlier generation effect when adding noise to single node.  

(Budhathoki et al. 2022); 

Root cause feature set selection 
using feature extraction methods 

SHAP (SHapley Additive exPlanations) assigns each feature an 
importance value for a particular prediction, SHARPLY. 

(Lundberg and Lee 2017); 

Mutual information regression. (Beraha et al. 2019) 
Analysis of Variance (ANOVA) F statistic. e.g. (Shakeela et al. 2020);  
Recursive Feature Elimination (RFE) or logistic regression; 
implemented in Skylearn (Scikit learn). 

e.g. (Ogunleye and Wang 
2018); (Hao and Ho 2019) 

Root cause feature set selection 
using quantified causal graph or 
feature extraction methods 

Selection of top 5 contributors for each method chain; Visualization 
using radar plots; Radar plot implementation and metrics over data 
feature plots with Python packages.  

(Draper et al. 2009); (Stancin 
and Jovic 2019) 

Anomaly prediction using 
selected candidate feature set 

ONEClass support vector machine (SVM) for time series prediction 
based on feature set only; One Class SVM; implemented using 
Phython Scikit-learn.  

(Amer et al. 2013); (Hao and 
Ho 2019) 

 XGBoost (eXtreme Gradient Boosting) is a tree boosting system 
that uses a sparsity-aware algorithm for sparse data and weighted 
quantile sketch for approximate tree learning.  

(Chen and Guestrin 2016); 
(Pedregosa and et al. 2011) 

Metrics for evaluation of 
prediction based on selected key 
data features 

Example accuracy metrics are: balanced-accuracy, Area Under the 
Receiver Operating Characteristic Curve (ROC-AUC), F1 score; 
implemented in Python Scikit-learn. 

(Pedregosa and et al. 2011); 
(Hao and Ho 2019) 

4. Results and discussion 

This section sows example results for each step of the root cause identification pipeline described in 
Section 3. Section 4.1 discusses the extracted image feature results and interprets differences between images of 
normal and failed production steps. In section 4.2, causal graphs are given based on the 4 different algorithms 
listed in Table 1 and compared regarding their structural credibility. Section 4.3 conducts causal graph 
quantification using 2 different approaches. Section 4.4 lists the failure anomaly prediction metrics using full 
feature data set, causal inference-based feature subsets for 4 different algorithms and importance feature 
extraction-based set of parameters using again 4 algorithms. 
 

Table 2. Example measurement comparisons between bad and good images. 

Type G-MGV G-Circ G-Area G-MZC Offset C-MGV S-Area 

Explana-
tion 

Glue mean 
grey value 

Glue 
Circularity 

Glue 
area 

Glue minimum 
zone circle 

Offset between glue 
and component center 

Component 
mean grey value 

Scratch area 

Bad 5.51 0.88 18808.5 135.9 10 72.24 22175 
Good 5.33 0.88 15025.5 10.63 2.33 86.22 2000 

4.1 Extracted image features 
Figure 2 illustrates contours detected for the image dataset to extract useful features (see Table 2) that will be 

beneficial in the later stages. Figure 2.a, 2.c, 2.e are images classified as failure while Figure 2.b, 2.d, 2.f are 
good images. Images 2.a, 2.b represent the contour for detecting the deposited glue and the measurements we 



   

 

learn from these images are glue area, glue circularity and glue mean grey value. Figure 2.c, 2.d represent two 
measurements: the minimum zone circle and the offset between the center of the glue contour and the 
Component center. Figure 2.e, 2.f represent the area of the scratch for the component drive which subtracts the 
total area with the area detected and measures the component mean grey value. See further examples in (Qalajia 
2024). 
Table 3 illustrates the value difference between good and bad images. Figure 2.a, 2.b have similar glue mean 
grey value and circularity value. However, the glue area is much larger for the bad image. Figure 2.c, 2.d have 
big difference in the mean grey value and the offset between good and bad images. Images 2.e, 2.f have a small 
difference in the component mean grey value, while the scratched area of the component is much greater in the 
bad image. Please note that in many cases the measurements between the good and bad images are very similar 
and cannot be separated.  

(a) Bad image glue detection. (b) Good image glue detection. 

 
(c) Bad image minimum zone circle. (d) Good image minimum zone circle.  

(e) Bad image scratch area.  (f) Good image scratch area.  

Fig. 2. Extracted features from images. 

4.2 Causal graph construction using extracted features and machine parameters 

This section considers production data consisting of machine measurements and image extracted features as 
explained in section 4.1. Each data point of the production step contains 26 machine parameters and 9 image-
based measurements, in total 35, which are explained in detail in (Qalajia, 2024)]. We compare the structure of 
the causal graphs and the subset of the most important features. Our aim is to determine which of the extracted 
features from the images and the machine parameters influence the outcome of the gluing process. In total  
2800 normal data points and almost 400 failed data-points are used to construct the graphs and in the feature  



   

quantification. The result of the causal discovery for the 4 approaches of Table 1 can be seen in Figure 3.  
 

 
(a) DAS.                                                                        (b) LiNGAM. 

 

 
(c) SCORE.                                                                        (d) NOTEARS. 

Fig. 3. Causal graphs based on machine- and image-extracted feature measurements. 

Figure 3 illustrates the causal graphs for joint assessment of machine measurements and image extracted 
features. Figure 3.a represents the output using DAS algorithm and we can see that it has the least connections to 
the outcome RESULT node and the second least total connections. Figure 3.b represents the LiNGAM algorithm 
and has a lot of interconnections and connections directly to the outcome node. Figure 3.c represents the SCORE 
algorithm and it has also multiple interconnections and connections directly to the outcome node. Figure 3.d 
represents NoTEARS algorithm and it has the least interconnections but multiple connections to the outcome 
node.  

4.3 Causal graph quantification 

Next, we estimate the contribution of each variable to the outcome. The results can be seen in the bar char 
plots of Figure 4. The quantification of the percentage of contribution of each node considers direct and indirect 
contributions using the algorithms listed in Table 1. 
 

             
(a) DAS causal graph quantification.                                                  (b) LiNGAM causal graph quantification. 

      
(c) SCORE causal graph quantification. (d) NOTEARS causal graph quantification. 

Fig. 4. Key features from machine and image data from causal graph quantification. 



   

 

Figure 4 represents the contribution of each node to the variance of the outcome node, which sum up to 
100%. Figure 4.a represents the quantification of DAS algorithm and it can be seen that only two machine 
features and three image extracted feature have an influence on the outcome node. In addition, the result node 
has small influence due to missing confounders, i.e. a node that is connected to the result node as well as a node 
that is also connected to the result node. Note that contributions are also plotted if they are not direct 
contributions e.g. parents of direct contributions, and their parents. Figure 4.b represents the quantification of the 
LiNGAM algorithm and we can observe that more variables are influencing the outcome. The machine 
parameters Corr(elation)-needle-y, corr-cam(era)-tool-x and pos(ition)-component-y have the strongest influence 
on the outcome while some of the image extracted features have some influence but much lower. Figure 4.c 
represents the quantification of the SCORE algorithm where Scrat(ch) feature has the highest influence on the 
outcome and we can also observe that torque-mix(ed)-avg(average) and corr-needle-r have also some influence. 
Note that . Moreover, the outcome node has the highest influence compared to the other 
algorithms which accounts to missing confounders. Figure 4.d represents the quantification of NOTEARS 
algorithm and we can see that corr-cam-tool-x variable has almost a 70% influence on the outcome while the 
other variables have lower influence rate. 

4.4 Production failure prediction using anomaly detection with main root cause candidate set 

Now the machine parameters and image parameters with main contributions are selected to do anomaly 
prediction of production step failure. For each algorithm the 5 most contributing factors are considered:  

 The subset using DAS is {corr-needle-r, corr-needle-x, Scrat, Scratch-Area, Glue-Radius-mec}; 
 for SCORE {corr- needle-r, corr-needle-x, Scratch-Area, Scrat, torque-mix(ed)-avg}; 
 for LiNGAM {corr-needle-y, corr-cam-tool-y, pos-component-y, corr-cam-tool-x, Scratch-area}; 
 and for NOTEARS {corr-cam-tool-y, torque-mix-max, corr-needle-r, Scrat, cal- cam-tool-y}.  

Observe that the subset for each algorithm is different and there is not one variable that is in all subsets.  
Now the aim is to evaluate the subsets using anomaly detection. In Table 3 several accuracy metrics are 

calculated for each of the 4 causal algorithms and compared to the full data subset and to 4 state-of-the-art 
feature selection algorithms that are listed in more detail already in Table 1. 

Table 3. Metrics for production step failure anomaly prediction with ONEClass SVM using data feature subset.  
The metrics are used to evaluate the quality of the root cause data subset identification. 

Method for causal discovery Balanced accuracy F1 score Precision recall curve 
DAS 0.67 0.91 0.95 

SCORE 0.73 0.93 0.95 
LiNGAM 0.67 0.91 0.95 

NOTEARS 0.74 0.93 0.96 
Full dataset 0.72 0.93 0.96 

Shapely 0.72 0.93 0.96 
Mutual info regression 0.85 0.96 0.98 

ANOVA-F statistic 0.71 0.92 0.95 
RFE-logistic regression 0.62 0.90 0.94 

 
Table 3 represents the evaluation for the most influential features using ONEClass support vector machine 

(SVM) for anomaly prediction, see method details in Table 1. For each subset we compute the balanced 
accuracy, f1 and precision recall curve scores. This is a first example of anomaly detection with most influential 
measurements as identified with feature extraction methods, see section 4.1. The 2nd to 5th row represents the 
scores for the causality feature selected as illustrated in blue. We can observe that NOTEARS has the highest 
balanced accuracy and SCORE is one percent lower. The F1 and precision recall curve are similar for all 
algorithms. The balanced score for the full dataset is 0.72 which is lower than NOTEARS and SCORE but 
higher than DAS and LiNGAM. Moreover, the F1 and precision recall curve scores for the full dataset are the 
same for NOTEARS.  

The causality-based feature selection algorithms can compete with start of the art feature selection algorithms 
and in most cases have higher scoring metrics. The NOTEARS and SCORE algorithms have higher balanced 
accuracy than Shapley, ANOVA-F and RFE-logisitc regression, while maintaining similar F1 and precision 
recall. Mutual Info classification has highest balanced accuracy, and higher f1 and precision recall values by a 
margin. 

 
 



   

Table 5 represents the evaluation of the subsets using XGBoost for anomaly detection. We can observe that DAS 
algorithm has the highest balanced accuracy compared to other causality-based algorithms. The F1 and precision 
recall curve score is almost similar for all the causal graph based algorithms. NOTEARS has the highest 
balanced accuracy for OneClassSVM, however, surprisingly has the lowest for XGBoost. Causality based 
feature selection achieves similar results in F1 and precision recall when compared to full dataset and state of the 
art feature extraction algorithms. DAS algorithm has the highest balanced accuracy score compared to all 
algorithms and other causality-based algorithm differ with only with a small margin to state-of-the-art methods. 

 
Table 5. Metrics for production step failure anomaly prediction with XGBoost using data feature subset.  

Again, the metrics are used to evaluate the quality of the root cause data subset identification. 

Method for causal discovery Balanced accuracy F1 score Precision recall curve 

DAS 0.93 0.98 0.99 

SCORE 0.90 0.99 0.99 

LiNGAM 0.89 0.98 0.98 

NOTEARS 0.86 0.98 0.98 

Full dataset 0.90 0.98 0.98 

Shapely 0.91 0.99 0.99 

Mutual info regression 0.91 0.99 0.99 

ANVOA-F statistic 0.88 0.98 0.98 

RFE-logistic regression 0.88 0.98 0.98 

 

 

 

Fig. 5. Star plot analysis of features contributing to causal subsets of 5 most important data features.  
Balanced accuracy comparison for different number of features using Oneclass SVM. 

(a) Star plot counting how often data feature is selected by all 4 causal algorithms; (b) Star plot subset comparison using logarithmic scale; 
(c) NOTEARS accuracy comparison;(d) LiNGAM accuracy comparison. 

 
In Figure 5.c, 5.d and Figure 6.a, 6.b we can see the balanced accuracy comparison for different numbers of 

features considered for the 4 causal algorithms. The aim is to observe how the number of features affect the 
balanced accuracy. Figure 5.c, 5.d represents the balanced accuracy comparison for the NOTEARS and 
LiNGAM causal quantification using Oneclass SVM model. In Figure 5.c we can see that the balanced accuracy 
is initially increasing proportionally with the number of features. However, when the number of features is 5 we 
see the highest recorded accuracy and after that, as the number of features increases, we see no clear relationship 
to the accuracy. Figure 5.d illustrates LiNGAM algorithm where the accuracy is increasing but not in a 

a)                                                                             b) 

c)                                                                           d) 



   

 

proportional manner. When the number of features is almost 16 we see one of the highest accuracy but then it 
keeps alternating until the number of features is 34, which marks the highest accuracy.  

Figure 5.a counts how often a data feature was within the 5 most important ones as identified by the 4 causal 
algorithms. It ranges from 1 to 3 times. Figure 5.b gives the absolute values of the same data features using a 
logarithmic plot to basis 10 revealing that in most cases also the highest numbers of counts also correlate to the 
highest number of absolute values, see e.g. correlation needle radius. 

Figure 6 represents the balanced accuracy comparison for the DAS and SCORE causal quantification using  
XGBOOST model. In Figure 6.a the highest accuracy is for one feature which is corr-needle-r, then it decreases 
and alternates by a small margin. Note that the difference between the highest and lowest accuracy is less than 
0.2 % in this case only. For Figure 6.b the accuracy is low only for the initial two features and then it remains 
almost constant as the number of features is increased. The third variable that caused the high increase is also 
corr-needle-r. In Figure 6 we can clearly see that the number of features affecting the outcome are much less 
than in Figure 5. 

 

 
Fig. 6. Balanced accuracy comparison for different number of features using XGBOOST. 

(a) DAS-accuracy comparison; (b) SCORE-accuracy comparsion. 

5. Conclusions and outlook 

In summary, a method chain has been presented that digests heterogeneous hardware production step data, in 
particular image data and machine data, constructs a causal failure root cause graphs and quantifies them 
sufficient to determine most contributing data features. These were used to predict production step failure. The 
number of data features was selected from 35 to ca. 3 to 5 key features that generated similar anomaly prediction 
results than the full data set. It was found that the most promising 4 causal inference approaches compare very 
well and are often even better than state-of-the-art feature extraction methods.  

Using the causal ladder terminology of the introduction section 1, the causal graph construction itself allows 
rung 2 and rung 3 analysis, i.e. the effect of variations of data feature values on the production step result can be 
estimated in terms of if there is an influence at all and how strong it is as well as counterfactual assessments 
could be attempted in terms of hypothesizing how the result would be affected if some arrow connections would 
be added or removed. Rung 2 considerations have been used in the present approach to assess the strengths of 
the effect of data features nodes on the production step results.  

However, it remains somewhat unclear what can be considered as true root cause in the present case as 
several data features are analytically related to each other, e.g., x, y and r, or it has not yet been clarified in as far 
data features can be changed in production process at all or even in addition independent from each other. 
Nevertheless, the radar plot approach is expected to be very helpful for analysts of production failures at it gives 
strong hints where to search and eliminate failures in the production process. In addition, it allows to superpose 
the results of several causal inference approaches thus increasing likely robustness of root cause identification.  

Future work could further explore rung 2 and rung 3 analysis and improvement options, in particular 
hypothesis ranking of best production process optimization options.  
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