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Abstract 

The pitch bearing of a wind turbine plays a crucial role in achieving precise blade positioning and ensuring the safety and 
power generation efficiency of the turbine. Since the faults developed in such bearings are often associated with long 
downtime and high maintenance costs, it is of significance to detect their faults as early as possible. However, due to the non-
integer cycle rotation of the pitch bearing during normal operation, traditional vibration analysis methods are incapable of 
detecting the faults in such bearings. To address this issue, an innovative pitch bearing monitoring technique is proposed in 
this paper by leveraging the advantages of thermal imaging analysis and deep learning. In this study, outer race faults were 
emulated on a specially designed pitch bearing test rig. Then, temperature distributions across the bearing structure were 
captured using a thermal imaging camera. Subsequently, the captured images are used to train the YOLOv5 algorithm to 
detect faults. Finally, the proposed technique is validated by comparing its fault detection results with stress measurements 
that are more reliable, but not feasible to use in practice. It has been demonstrated that the proposed thermal imaging-based 
technique is capable of accurately detecting pitch bearing faults, even when the bearing is not in rotation. 
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1. Introduction 

In light of pressing global issues, such as climate change and environmental pollution, there is an ongoing 
shift in global energy consumption toward cleaner sources, gradually replacing fossil fuels. Wind energy stands 
out as a key player in the clean energy sector, and its global installations continue to experience rapid growth. 
The Global Wind Energy Council (GWEC) forecasts that by 2024, annual onshore wind power installations will 
surpass the 100 GW milestone, while offshore wind power installations are projected to exceed 25 GW by 2025. 
Looking ahead to 2027, the world is expected to have a total wind power installation capacity of 680 GW, with 
130 GW being installed offshore (GWEC, 2023). Today, many countries are making substantial strides in wind 
power development. For example, it anticipates that by 2050, domestic wind power installations in China will 
reach an impressive 2,400 GW, constituting a substantial 33.8% of the total installed capacity in the country 
(National Development and Reform Commission, 2015). Wind power is also vital in helping the UK achieve its 
net-zero emissions targets. The UK now possess around 12.7 GW of connected offshore wind energy across 44 
wind farms totaling over 2,500 turbines, but the UK government has set an ambitious target to deliver 50 GW 
offshore wind installed capacity by 2050. To cater to the demands of this rapidly expanding market, modern 
wind turbine designs have evolved to be exceptionally advanced to achieve lighter weight, larger power 
generation capacity, and higher efficiency designs. Yet, this progress also results in a more intricate and compact 
configuration for the turbine's structures, and consequently elevates the likelihood of turbine failures (Hofmann, 
2014).  

The long-term wind power practice has demonstrated that pitch bearings are one of the most fragile 
components among all wind turbine components (Wilkinson et al., 2010; Bi et al., 2014; Liu et al., 2019). The 
failure of pitch bearings can result in the loss of blade control and even damage to the entire turbine system. Due 
to the high cost of maintenance and replacement of pitch bearings, their condition monitoring and fault diagnosis 
are crucial for reducing operational and maintenance costs and improving system reliability. In recent years, 

ESREL 2024  
Monograph Book Series 



   

research on the condition monitoring and early fault detection of blade pitch bearings has gained increasing 
attention. Currently, common methods for pitch bearing condition monitoring include vibration analysis (Liu et 
al., 2019; Zvokelj et al., 2010), finite element method (FEM) (Plaza et al., 2015), oil analysis (Liu, 2007; Bai et 
al., 2011), acoustic emission (AE) (Van Hecke et al., 2016), etc. For example, Liu et al. (2020) proposed an 
empirical wavelet thresholding method to remove heavy noise, extract weak fault signals, and successfully 
achieved fault diagnosis of pitch bearings. Pan Y. et al. (2019) introduced a systematic approach based on cyclic 
domain resampling to map time-series signals into the angular domain, eliminating the time attribute and 
reducing the number of circular domain signals using segment-wise aggregated approximation with 
neighbourhood correlation, and successfully detected frequency variations in vibration signals when initial faults 
occurred. et al. (2019) provided a model-based solution to detect pitch bearing damage, where blade 
angle residual between healthy and monitored local models was used to raise anomalies. However, the method 
was only demonstrated in FAST simulation with artificially seeded bearing faults, and there were not any 
hardware tests for validation. He et al. (2019) and Pan D. et al. (2019) introduced a methodology for monitoring 
the condition of blade pitch by analysing electric current signals obtained from the electric pitch actuator. This 
approach has undergone validation in MW-scale commercial wind turbines with naturally damaged pitch 
bearings. It is noteworthy that the efficacy of this technology was demonstrated in scenarios where only one 
pitch bearing exhibited defects. However, the detection results may be influenced by variations in pitch operating 
conditions. Likewise, Kandukuri et al. (2019) similarly aimed to leverage electric current signals acquired from 
the electric pitch actuator for pitch bearing fault detection, employing support vector machine (SVM) as a 
discerning tool. Sandoval et al. (2020) proposed a novel approach for low-speed bearing fault diagnosis based on 
permutation and spectral entropy measurements, and successfully differentiated different fault types based on 
different entropy values. Compared to vibration-based condition monitoring and fault diagnosis methods, 
acoustic emission-based methods have advantages such as strong resistance to noise interference, higher 
sensitivity, and wider frequency response. After subsequent signal processing, the acoustic emission frequency 
signal becomes clearer and purer, allowing for fault identification and determination, particularly in the 
processing of low-frequency signals. Liu and Wang et al. (2020) proposed a discrete/random separation-based 
cepstrum editing (DRS-CEL) method to extract weak fault features from the original acoustic emission signal, 
edit the cepstrum using discrete/random separation, further filter residual noise leaked by DRS-CEL using 
morphological envelope analysis, and demodulate the denoised signal, thereby inferring specific bearing fault 
types in the frequency domain. Wei et al. (2020) proposed a new Normal Behaviour Modelling (NBM) method 
to predict wind turbine electric pitch system failures using supervisory control and data acquisition (SCADA) 
information. In the data preprocessing stage of the proposed method, the operational state codes from turbine 
programmable logic controller are applied to filter SCADA data to remove interferential information and 
improve data quality. Zhang and et al. (2022) proposed a new algorithm called Time Convolution 
Enhanced Bayesian Searc
the window length, they used the Split Bayesian Augmented Lagrangian (SBAL) algorithm based on the split 
window technique to construct a time-varying model and determined the type of pitch bearing fault using 
envelope analysis. Zhang and Liu et al. (2022) also introduced a method called Bayesian and Adaptive Kalman 
Augmented Lagrangian (BAKAL) to filter signals under time-varying conditions. This method employed a two-
step search (i.e., coarse search and fine search) to handle the filtering process based on the Bayesian Augmented 
Lagrangian (BAL) framework. Furthermore, linear effects, nonlinear effects, and their sparsity were considered 
when constructing the model. Finally, superior fault diagnosis performance was achieved by handling the 
ambiguity in the spectrum through signal resampling in the order domain. Chen et al. (2023) integrated Bladed 
and MATLAB using Python and a cloud platform for integrated life cycle simulation to reduce simulation time. 
They proposed a three-dimensional modelling approach to calculate crack propagation in pitch bearings 
throughout their entire life cycle and accurately identified and predicted the evolution of early crack propagation 
in pitch bearings.  

All the work mentioned above considered the pitch bearing as a low-rotating component. However, unlike 
continuously rotating bearings, such as wind turbine main bearings, gearbox bearings, and generator bearings, 
the pitch bearing operates with -integer 
cycle rotation presents a significant challenge when applying conventional vibration analysis methods for the 
purpose of monitoring blade pitch bearings. Interference from blade flapping and dynamic wind loads can 
further complicate the condition monitoring signals collected from pitch bearings. This makes the currently 
available methods difficult to implement pitch bearing monitoring in practice. The purpose of this paper is to 
tackle this challenge by leveraging the advantages of thermal imaging analysis and deep learning.  



   

2. Setup of experimental test rig 

To facilitate the study, a blade pitch bearing test rig was developed in the laboratory, as shown in Figure 1. 
For simplicity, the test rig is featured by a single row contact ball bearing. The detailed specifications of the 
bearing can be found in Table 1. In addition, the long-term wind power practice has shown that the outer race is 
one of the most vulnerable components in the blade pitch bearings. For this reason, 16 strain gauges were evenly 
attached to the outer race of the bearing using specialized adhesive H610 to precisely detect and analyze the 
strain distribution of the bearing  outer race. It is presumed that outer race faults will induce a significant 
change in the local strain on the outer race of the bearing. Therefore, in this study, the results measured by these 
strain gauges will be employed to verify the thermal imaging analysis results. The specifications of the strain 
gauges are given in Table 2. In practical scenarios, the external load on the blade bearings arises from both the 
gravitational pull on the wind turbine blades and the force exerted by the wind. However, replicating such 
overturning moments in the laboratory to induce bearing deformation is challenging. Consequently, in the 
experiments of this study, a jack was employed to apply load directly to the shaft, effectively simulating the 
loads imposed by the wind turbine blades and wind. Although such a load application method may not precisely 
replicate the time-varying loads experienced by the blade bearing, it effectively induces the necessary 
deformation required for the study.  

 

           
Fig. 1. (a) Bearing used in the test rig; (b) Test rig; (c) Data acquisition system. 

Table 1. Specifications of the bearing used in the test rig. 

Structural parameter Numerical value 

Outside diameter D/mm 200 

Inside diameter D/mm 100 

Pitch diameter d m/mm 150 

Ball diameter D n/ mm 10 

Bearing height H /mm 30 

Coefficient of curvature radius of inner ring groove fi 0.525 

Coefficient of curvature radius of outer ring groove fe 0.525 

 45 

Table 2. Specifications of the strain gauges. 

Strain gauge parameter Numerical value 

  

Base length * base width /mm 9*4 

Grid length * grid width /mm 5*3 

Supply voltage /v 3-5 

Strain limit /um/m 20000 

3. Fault simulation and data acquisition  

Given that cracks are a prevalent fault observed on the outer race of the pitch bearing, as depicted in Figure 
2a, a simulated crack fault was intentionally introduced onto the outer race of the bearing being tested, as 
illustrated in Figure 2b.  

a)                                                   b)                                                            c) 



   

         
Fig. 2. (a) Real crack fault of blade bearing; (b) Simulated crack on the outer race of the bearing being tested. 

In this study, a FLUKE Ti450 infrared camera was employed to capture thermal images of the blade bearing 
under various health conditions. It is shown in Figure 3, and its detailed specifications are listed in Table 3. 
 

 
Fig. 3. Thermal camera used in the study.  

Table 3. Specifications of the thermal imaging camera FLUKE Ti450. 

Main features:  

IFOV (spatial resolution) with standard lens 1.31mRad,D:S 753:1 

Detector resolution  

Multi- -point focus Yes, close-up and telephoto images can be captured throughout the view 

Laser rangefinder Yes, calculate the distance to the target to get a precisely focused image. 

Temperature measurement:  

Temperature measuring range  

Precision  

Thermal sensitivity (NETD) filter mode  

 

 
Subsequently, warm up the cracked bearing and collect 1200 thermal images of the bearing when it is at 

various temperatures. A subset of the thermal images acquired during the experiment is presented in Figure 4. 
From Figure 4, it is found that  

 regardless of the bearing temperature, the crack on the bearing outer race can be clearly observed from 
the thermal images collected using the FLUKE Ti450 infrared thermal imaging camera; 

 moreover, the higher the bearing temperature, the crack appears to be clearer in the thermal images. 
The aforementioned observations indicate the efficacy of employing thermal detection for identifying faults in 

the outer race of wind turbine blade bearings. One notable advantage of such a condition monitoring approach is 
the elimination of the need for a sensor directly attached to the blade bearing. Instead, infrared thermal images 
can be taken from a distance. This addresses the significant challenge of sensor installation in confined spaces, as 
well as mitigates issues encountered during data collection and transmission. 

a)                                                                                                  b) 



   

        
 

        
Fig. 4. (a) Image taken at temperature 1; (b) Image taken at temperature 2;  

(c) Image taken at temperature 3; (d) Image taken at temperature 4.  

4. Artificial fault detection using YOLOv5 model 

4.1. Brief introduction of YOLO series of models 

The YOLO (You Only Look Once) series comprises end-to-end object detection algorithms, distinguished by 
their remarkable efficiency in achieving swift detection while maintaining high accuracy. Unlike traditional two-
stage detection methods, YOLO directly transforms the object detection task into a regression problem. This 
unique approach predicts both the object class and bounding box coordinates in a single neural network, 
eliminating the need for data transfer between multiple modules and significantly enhancing real-time detection 
speed. One key advantage of the YOLO algorithm is its efficient handling of small objects without the need for 
intricate preprocessing of training data. This is attributed to its specialized loss function, contributing to its 
widespread application in practical scenarios.  

The YOLO series of algorithms showcases continuous innovation. YOLOv2 and YOLOv3, as 
representatives, are both end-to-end object detection methods designed for real-time applications. YOLOv2 
builds upon its predecessor and addresses various issues through introducing of Batch Normalization, and the 
use of Anchor Boxes and multi-scale training. Specifically, YOLOv2 adopts the Darknet-19 network architecture 
and incorporates Batch Normalization, which enhances training stability and showcase improvements over the 
original YOLO algorithm. YOLOv3 further optimizes YOLOv2 by adopting the deeper Darknet-53 network 
structure, enhancing feature extraction and detection accuracy. YOLOv3 introduces three different scales of 
detection, enabling the detection of objects of various sizes and bolstering the algorithm's applicability and 
robustness. Moreover, YOLOv3 employs more complex loss functions, including classification loss, bounding 
box coordinate loss, and confidence loss, further optimizing the model and improving detection accuracy. 

Building on YOLOv3, YOLOv4 and YOLOv5 represent advanced iterations, boasting higher detection 
accuracy and faster speeds. YOLOv4 introduces the CSPDarknet53 network architecture on the network of 
YOLOv3, which utilizes the Cross-Stage Partial Network structure to enhance feature extraction capability and 
model robustness. By contrast, YOLOv5 takes a different approach, adopting a lightweight network architecture 
such as CSPNet and leveraging techniques such as reinforcement learning and adaptive training for accelerated 
model training and exceptional performance in both accuracy and speed. Additionally, YOLOv5 introduces the 
Adaptive Radius Estimation method, dynamically adjusting the size of object detection bounding boxes, further 
enhancing the algorithm's robustness and applicability. Both YOLOv4 and YOLOv5 utilize the Spatial Pyramid 
Pool (SPP) Block structure, a spatial pyramid pooling module capable of handling objects of varying sizes, 
thereby augmenting the algorithm's applicability and robustness. The diagram of the SPP Block structure is 
shown in Figure 5. 

a)                                                                              b) 
 
 
 
 
 
 
 
 
 
 
c)                                                                             d) 



   

 
Fig. 5. Diagram of Spatial Pyramid Pool (SPP) Block structure.  

Simply speaking, the structure of the YOLO series models consists of four key modules: Input, BackBone, 
Neck, and Output. Figure 6 illustrates the specific network structure of YOLOv5. From the figure, it becomes 
evident that the YOLOv5 network structure primarily comprises CBL modules that consist of Convolutional 
(Conv) layers, Batch Normalization (BN) layers, and Leaky_ReLU activation functions; Resunit residual 
network modules; BottleneckCSP modules composed of Convolutional layers and multiple Resunit modules; 
and SPP modules that perform multi-scale fusion using max pooling. These modules are integrated together 
through tensor concatenation operations for dimension expansion and tensor addition operations for dimension 
consistency (Yao et al., 2021). 

 

 
Fig. 6. Network structure of YOLOv5 model.  

In the 'Input', YOLOv5 employs the same mosaic data enhancement technique as YOLOv4, exhibiting 
superior performance in detecting small targets. The Mosaic data augmentation method employs random scaling, 
cropping, and arrangement on the dataset, yielding two primary advantages. Firstly, the Mosaic technique 
enhances the dataset's complexity. By applying random scaling and cropping to multiple images and arranging 
them in a randomized manner, the dataset's diversity is significantly amplified. Notably, the random scaling 
operation boosts the occurrence frequency of small targets, thereby enhancing the training model's robustness. 
Introducing more samples with diverse scales, poses, and occlusion variations enables the model to better adapt 
to a range of real-world scenarios. Secondly, the Mosaic method mitigates GPU memory usage. As the 
generation of concatenated images involves random scaling and cropping operations, the number of images 
required to be read for each mini-batch can be minimized. Consequently, even when training with a single GPU, 
commendable training results can be attained. This reduces hardware resource demands during the training 
process, thereby enhancing training efficiency and scalability. In addition, YOLOv5 introduces the adaptive 
anchor frame calculation feature, dynamically computing the optimal anchor frame value during each training 
session across various datasets.  

In 'Backbone', YOLOv5 incorporates the Focus structure to enable efficient slicing operations. For instance, 

  



   

Moving to the 'Neck' component, YOLOv5 utilizes a combination of the Feature Pyramid Network (FPN) - 
Path Aggregation Network (PAN) structure, the CSP2 structure from Cross Stage Partial Network (CSPNet), and 
PANet to aggregate features. The neck's primary purpose is to generate feature pyramids, enhancing the model's 
ability to detect objects of varying scales. This facilitates the recognition of the same object at different sizes and 
scales. The feature extractor of the network adopts a novel FPN structure, enhancing the bottom-up path and 
improving the propagation of low-level features. 

In , the GIOU_Loss loss function and Non-Maximum Suppression (NMS) algorithm are employed to 
enhance the accuracy and robustness of prediction results. Throughout the training process, the loss function's 
value signifies the disparity between the model's predictions and the ground truth values. By minimizing this loss 
function, the model gradually converges, thereby reducing prediction errors and refining the overall fitting of the 
model. GIOU_Loss function represents an advanced loss function that introduces a correction factor derived 
from GIOU_Loss function to more precisely evaluate the similarity between predicted boxes and ground truth 
boxes. Through the optimization of GIOU_Loss function, the model achieves enhanced accuracy in locating 
target objects and predicting their sizes, thereby elevating the quality of detection results. Finally, the NMS is a 
technique employed to eliminate overlapping detection boxes. It prioritizes the box with the highest confidence 
as the primary detection result and suppresses other boxes with significant overlap. This process effectively 
eliminates redundant detection results, resulting in more precise object detection outputs. 

4.2. Training of YOLOv5 model 

The hardware used for training the YOLOv5 algorithm includes an Intel(R) Xeon(R) Gold 6226R CPU, a 
GeForce RTX 3060 GPU, and 128GB of memory. The training process took place on a Windows 10 operating 
system with CUDA version 11.1. Python 3.8 served as the programming language, and PyTorch was chosen as 
the deep learning framework. 

Then, the thermal images collected from the blade bearing in Section 3 were used to train the YOLOv5 
algorithm with the specified parameter configurations: SGD optimization algorithm, a batch size of 2, a 
maximum of 300 epochs, and a cosine annealing strategy for dynamically adjusting the learning rate, initiated at 
0.01. The weight decay coefficient is set to 0.0005, and the momentum factor is 0.937. The GIOU_Loss function 
serves as the designated loss function. The input image size is 2048 2048, and four images are concurrently 
trained in each iteration. 

As mentioned earlier, image data augmentation technique is commonly used to improve the model's 
generalization capability. In this study, the following image data augmentation methods were adopted for 
training YOLOv5 object detection algorithm: 

 Random cropping: Randomly selecting a region in the image and cropping it to a fixed size. This 
simulates different positions and scales of targets in the image; 

 Random scaling: Randomly changing the size of the image, which can vary the scale of targets in the 
image, enhancing the model's ability to recognize objects of different scales; 

 Random flipping: Randomly horizontally or vertically flipping the image, enhancing the model's ability 
to recognize targets from different perspectives; 

 Random rotation: Randomly rotating the angle of the image, simulating changes in the appearance of 
targets at different angles; 

 Random adjustments to brightness, contrast, and saturation: Randomly adjusting the image's brightness, 
contrast, and saturation, improving the model's ability to recognize targets under different lighting 
conditions. 

For YOLOv5 algorithm in this paper, training involves simultaneously processing four images. Some random 
operation results obtained during training process are illustrated in Figure 7. 

During the training process, several important metrics are used to evaluate the performance of the model. 
Among them, the Box metric represents the error between the predicted box and the ground truth box using the 
Generalized Intersection over Union (GIoU) (Rezatofighi, 2019). The GIoU is utilized to measure the accuracy 
of regression boxes, with values close to 0 indicating higher precision in predicting regression boxes. The 
Objectness  metric assesses the accuracy of object detection, and a value close to 0 signifies higher accuracy in 

object detection. Additionally, there are two other metrics, Precision and Recall. Precision denotes the ratio of 
correctly detected objects to the total detected objects, with a value closer to 1 indicating more accurate detection 
results. Recall represents the ratio of correctly detected objects to the total annotated objects, and a value closer 
to 1 signifies a higher recall rate, indicating more accurate detection of objects. mAP@0.5 is a commonly used 
evaluation metric, representing the Average Precision calculated at various Intersection over Union (IoU) 
thresholds. It is computed by calculating the area under the Precision-Recall curve. A higher mAP value, 
approaching 1, indicates higher accuracy in object detection by the algorithm. The results of these metrics are 
shown in Figure 8. 



   

 
Fig. 7. Part of data augmentation results.  

Fig. 8. (a) Box error; (b) Object detection error; (c) Precision; (d) Recall rate; (e) mAP@0.5.

From Figure 8, it can be seen that the YOLOv5 network exhibits a higher detection accuracy for small-scale 
objects. After computing the training results, the model achieves an average precision (mAP) of 99.5%.  

4.3. Verification of the trained YOLOv5 model 

To verify the trained YOLOv5 model, 500 infrared thermal images taken from both normal and cracked 
bearings were randomly selected from the image database. Then, the trained YOLOv5 model was applied to 
analyze the images. A subset of the crack detection results is illustrated in Figure 9. Obviously, the trained 
YOLOv5 model correctly discriminated normal and correct bearings, accurately identifying the presence of 
cracks on the outer race of the blade bearing and achieving a 100% accuracy rate. 

5. Conclusions 

To tackle the challenge of monitoring the health condition of wind turbine blade bearings operating in non-
integer cycles, this paper introduces an intelligent technology for blade bearing condition monitoring, leveraging 
infrared thermal detection and the YOLOv5 artificial neural network model. The experimental results have 
demonstrated that: 

 Infrared thermal detection emerges as a highly effective method for detecting crack faults in the outer 
race of blade pitch bearings. Its notable advantage lies in its capacity to capture images from a 
considerable distance. This surpasses traditional non-destructive testing methods, obviating the need for 
sensor installation. It also exhibits significant advantages in data collection and transmission. 



   

 The YOLOv5 model exhibits outstanding superiority and robust detection capabilities, particularly in 
the realm of small object detection. In this study, the trained YOLOv5 model demonstrated an 
impressive average detection accuracy of 99.5%. 

Encouraged by the achievements in this paper, the future research endeavors will delve into further exploring 
the capabilities of the proposed technology for detecting various types of faults in blade pitch bearings beyond 
the scope of this study that only considered the detection of cracked outer race fault. 
 

 
Fig. 9. Part of the object detection results generated by YOLOv5 model.  
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