
   

 

Advances in Reliability, Safety and Security, Part 9   
Association, Gdynia, ISBN 978-83-68136-21-0 (printed), ISBN 978-83-68136-08-1 (electronic) 

 

 

    
 
 

Gas Path Analysis Of Two Shaft Gas Turbine Engine By Utilizing 
Multi Operating Point Conditions And Bank Of Kalman Filters 

Soroush Abyaneh 
MAPNA Group, Tehran, Iran  

 

Abstract 

One of the main purposes of gas path analysis (GPA) in gas turbine industry is to evaluate the health conditions of gas turbine 
engine components. In this study, a GPA module has been developed to compare all health parameters of a compressor of a 
specific gas turbine engine such as flow capacity, efficiency and pressure drop with respect to the reference values from a 

based on measured gas path parameters in multiple operating points. The GPA module operates as a developed computer-
based simulator model which receives operating point parameters as inputs. The performance behavior of a healthy engine at 
the specified operating conditions is generated by the simulator as the model outputs. A set of these outputs is compared with 
the corresponding actual turbine outputs received by sensors embedded on the turbine. In case of differences between the 
simulator outputs and actual sensor data, model health parameters are changed by an estimator whose algorithm is based on 
an Unscented Kalman Filter (UKF), so that the evaluated parameters and their corresponding sensor data coincide. It has 
been proved that a certain number of health parameters could be ignored in order to optimize the GPA module overall 
performance. The developed GPA module encompasses different scenarios for the engine model in each of which the number 
of health parameters varies with a single Kalman Filter (KF) estimator attributed to each model. The combination of KFs 
constitutes a bank of KF. The results show the effectiveness of bank of KF utilization in health parameter fault estimation for 
some case studies performed on the studied gas turbine. It has also been shown that fault estimation algorithm is enhanced by 
employing multiple operating points. The results have been verified utilizing a GPA module developed and implemented on a 
Gas Turbine engine. 
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1. Introduction 

One of the most important issues in gas turbine fault detection process is the performance analysis of gas 
turbine engines. Fouling, corrosion and tip clearance are the common faults which affect the efficiency and flow 
rate of the engine components. By measuring and analyzing the engine performance parameters such as 
rotational speeds, temperature, pressure, etc., these faults could be detected (Urban et al., 1975).  

Among the numerous approaches for gas turbine condition monitoring, Gas Path Analysis (GPA), as a 
performance-analysis-based approach, is one of the most effective and powerful tools. The GPA approach 
provides valuable information regarding the deterioration of individual gas turbine engine components by 
estimating the deviation of the engine health parameters such as flow rates and efficiencies of the engine 
components (Liu et al., 2011). As gas turbine health parameters deviate from their nominal values which 
correspond to the healthy engine, the performance degradation occur in the components. 

The GPA approach was utilized for the first time by Urban et al. (1967) and the inclusion of engine 
nonlinearities in the GPA was first introduced by Stamatis et al. (1990). Barwell et al. (1987) and Doel et al. 
(1994) presented other fault diagnostic methods. In addition, operational improvements in the model-based fault 
diagnostic techniques have been introduced by (Panov et al., 2013). On the other hand, many integrated GPA 
methods have been developed using weighted-least-squares-based method (Doel et al., 1993), Bayesian (Pu et 
al., 2013) and artificial neural networks (Ghafir et al., 2014) genetic algorithm (Wallin et al.;2004) and fuzzy 
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systems (Verma et al.;2006). Utilization of Kalman-based observers is another common solution in the GPA 
approach as reported (Volponi et al., 2003; Kobayashi et al., 2003) for linear and by (Kobayashi et al., 2005; 
Dewallef et al., 2003) for nonlinear systems. A different error estimation approach for the fuel controller of a 
power generating gas turbine engine has also been introduced in (Montazeri et al, 2017) while (Tsoutsanis et al., 
2023) investigated performance diagnostics. 

In this study, the health parameters for a two-shaft gas turbine engine are estimated based on Kalman filter 
(KF) technique as a basis for fault detection process. The estimation is essential for predictive troubleshooting of 
the engine and is based on the operating points of the engine.  

2. Data and methods 

2.1. System description 

In this study, component health conditions are evaluated by the GPA approach. An engine model (GT model) 
calculates the engine parameters based on the environment conditions measured by the sensors and the health 
parameters estimated by the estimation algorithm (Kalman Filter). These calculated parameters are then 
compared with the corresponding parameters, evaluated by a healthy gas turbine engine model (GT Healthy). 
This healthy model is the same as the GT model except that its health parameters have been set to zero. The 
health parameters are the efficiency and mass flow deviation of the engine components from its healthy 
conditions which will be discussed in more detail. The difference between the GT Model output (Out_Real) and 
the GT healthy output (Out_Healthy) is forwarded to the Kalman filter for health parameters estimation so that 
the GT model outputs become as close as possible to the corresponding Healthy engine parameters. This process 
is repeated to obtain until the best estimation which will lead to the lowest error signal. The schematic diagram 
of the GPA algorithm is illustrated in Figure 1. 

The proposed GPA method operates as a developed computer-based simulator model. The operating point 
parameters are considered as the input data (ambient conditions) which are: compressor inlet pressure ( ), 
compressor inlet temperature ( ), power turbine speed ( ), compressor outlet pressure ( ) and 
ambient relative humidity ( ). This set of inputs has been designated by vector V. 

 

 
(1)  

 

The performance parameters of the engine, generated by the engine model are the gas generator shaft speed 
(NGG), gas turbine exhaust temperature ( ), compressor outlet pressure ( ) and compressor outlet 
temperature ( ) which are designated by vector Out.  
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Fig. 1. The schematic diagram of the GPA algorithm. 

These calculated parameters are compared with the corresponding actual turbine outputs (measurements). In 
case of differences between the z vectors of the simulator and the actual turbine data, an estimator changes the 
health parameters (vector X) of the model so that model outputs coincide with the output of the actual turbine. 



   

 

The estimator algorithm is based on an UKF procedure which estimates the turbine health parameters deviations 
from the healthy conditions. Therefore it is needed to define the reference health parameters for the engine 
model ( ). For this purpose, the engine model is divided into five sections which are: compressor, 1st stage of 
the gas generator turbine (GG), 2nd stage of the gas generator turbine, 1st stage of the power turbine (PT) and 
2nd stage of the power turbine. For each section, three health parameters are defined as: mass flow rate, pressure 
loss and efficiency. Thus there will be the total of 15 health parameters.  

The GPA health parameter estimation algorithm is represented as a block model in Figure 2. The detailed 
fault diagnostic estimation by UKF is as follows: 
 

 
(3) 

 

 

The ambient conditions along with NPT are first fed into the engine model and the UKF. The engine model 
calculates many outputs from which, four are forwarded as another set of inputs to the UKF. These signals are: 
NGG, ,  (vector Z). Finally the UKF estimates the map shifts (heath parameter deviations) that are 
generated for every health parameter with respect to their corresponding healthy conditions. These map shifts are 
called symptoms and are designated by a 15 element vector. If these map shifts are sufficiently small, then there 
will be no fault in the engine. Otherwise, every rather large symptom corresponds to a fault in some part of the 
engine. The 15 symptoms are the deviation of mass flow, efficiency and pressure loss in the compressor, first 
and second stage of the gas generator turbine and first and second stage of the power turbine. At first these map 
shifts have to be tuned. In other words, data from a healthy gas turbine is forwarded to the UKF and engine 
model and a vector of symptoms is generated. This map shift is then used as a permanent map shift for the rest of 
the analysis because it is the difference between the healthy gas turbine and the engine model that does not have 
to exist ideally. Therefore this undesired deviation between the model and the healthy engine is accounted for by 
this initial map shift. Every other deviation of the symptoms from this initial map shift is then considered as the 
engine fault.  

 
Fig. 2. Schematics of the Kalman filter and engine model interaction. 



   

 

 
Fig. 3. Bank of KFs interactions with the model. 

The use of all health parameters in the estimation process has some disadvantages the most serious of which 
is the smearing effect. This means that even healthy parameters may be estimated to be faulty. For this reason, a 
set of X vectors are assumed in each of which a certain number of health parameters are permitted to vary and 
the rest are assumed to be fixed. The utilization of a single KF for each set of health parameters is then applied.  
The combination of these KFs constitutes a bank of KF. The multiple estimation resulting from the bank of KF 
estimation algorithm are analyzed in order to detect the heath parameter deviations. The GPA health parameter 
estimation algorithm with the use of bank of KFs is illustrated in Figure 3. In this figure, for each set of heath 
parameters, a single KFi, i = ,n, (where n is the numbers of health parameters sets) is attributed which 
estimates an output vector Zi. The estimated parameter is then compared with the real corresponding data from 
IGT25 measurements. 

2.2. Gas path analysis 

In this study, one of the most accurate types of gas analysis has been used. It is based on nonlinear model and 
taking into account the possibility of accuracy of measurements. For this purpose, a precise software model has 
first been developed that fully simulates the gas turbine behavior. In addition to the model, there should be 
functional gas turbine data. With actual performance data and simulator model, the gas path analysis algorithm, 
as presented in Figure 4 is as follows: 

 the input and the initial values for the model parameters are given to the algorithm; 
 the algorithm executes the model and the model output is generated; 
 the model output is compared with the actual output data (corresponding to the same input); based on the 

difference value, these two parameter values are updated; 
 the algorithm is repeated with the updated parameters from the first step; 
 when the output of the model is identical to the updated parameters with the actual output, real 

parameters have been identified. 



   

 

 
Fig. 4. gas path analysis algorithm. 

It should be noted that the more the measurements are, the simpler and accurate the results will be calculated. 
But usually the number of parameters is greater than the number of measured outputs. Therefore, if a single 
operating point is used, the wrong values for the parameters may be calculated. For this reason, in the explained 
algorithm, enough input and output data must be considered for the operation of the steady state operating 
conditions of the turbine. 

Given that the number of operating points used in the algorithm is too much, if one of the measurements is 
inaccurate, the algorithm does not converge correctly. In this case, two conditions may occur; either the 
algorithm does not converge or the output of the corresponding model will differ from the output of the system. 
Therefore, the faulty sensor can be detected. If the latter case happens, it means that the calculated data with a 
certain offset for the sensor is defective and the faulty value is also known. If the first case happens, it would be 
harder to detect the faulty sensor. In such case, all sensors should be checked to detect a faulty sensor. In this 
way, a sensor is assumed to be defective; the sensor data is removed from the calculation and the algorithm is 
executed. If the algorithm is correctly converged, then the removed sensor is defective and the predicted value by 
the algorithm for that sensor indicates the sensor's deviation. With this method, it's best to check for sensors that 
are more likely to fail.  

3. Results 

The general algorithm for fault detection in the GPA method with the use of a UKF estimation method will 
have some disadvantages if a single operating point is used (the classical method). The most important limitation 
in the application of GPA is the lack of measurements and therefore the system's uncertainty. The single-point 
method, without prior knowledge of the turbine condition, is not able to determine the fault intensity. Some of 
the single-point method disadvantages are mentioned by Stamatis et al.;2011 including the following: 

only gives the answer when the fault location is known. 
It is not enough when measurements are less than the parameters 
One of the reasons for the development of other methods (including using multi operating points known as 

multi-point method) is the limitation in the number of measurements, which will be overcome by choosing 
multipoint method. The benefits of the multi-point method to the single point method in the UKF estimation 
have been illustrated in the following examples. At first, a single operating point with the characteristics listed in 
Table 1 is chosen to be used for the estimation algorithm.  

The first and fourth health parameters in the model are given faulty data. Using the UKF fault estimation 
algorithm, the results are presented in Figure 5. 

Table 1. The first operating point of the turbine. 



   

 

 
Fig. 5. Estimated faults for 14 health parameters using the first operating point. 

The fault estimation for the given operating point for 14 model health parameters are shown with green bars. 
The blue bars are the faults that were given to the health parameters of the assumed affected model. At the 
bottom of the figure, the numbers written in the first row are the model health parameters faults and second line 
numbers are the fault of the health parameters that UKF estimated for the model. As can be seen, the UKF did 
not correctly detect the faults using a single operating point. In other words, not only faults are attributed to 
defective parameters, but also to the healthy symptoms which is also known as smearing effect. Also, the fault 
intensities are not correctly estimated. 

The operation was repeated for the second operating point, the characteristics of which are shown in Table 2. 
For this point, only the power value has changed compared to the previous one. Corresponding results from the 
estimation algorithm are shown in Figure 6. As can be seen, the UKF has failed again to correctly identify the 
model faults. 

Table 2. The second operating point of the turbine. 

 

 
Fig. 6. Estimated faults for 14 health parameters using the second operating point. 

Some other operating points given in Table 3 and Table 4. have also been utilized for the UKF algorithm, the 
results of which are compared with the actual values of the faulty model in Figures 7 and 8 respectively. 

Table 3. The third operating point of the turbine. 



   

 

Fig. 7. Estimated faults for 14 health parameters using the third operating point. 

Table 4. The fourth operating point of the turbine. 

 

Fig. 8. Estimated faults for 14 health parameters using the fourth operating point. 

In order to overcome the smearing problem, the multi-point method has been utilized. This means that several 
operating points have been applied in the UKF algorithm for health parameters estimation. In Figure 9, the 
attributed faults to the health parameters are presented with blue bars. The estimated faults by the UKF estimator 
for 14 health parameters are illustrated with orange bars. As can be seen, the usage of multi-point method shows 
a significant improvement over the single-point. The faulty parameters are correctly identified and their 
intensities are well estimated with acceptable approximation. 

 

 
Fig. 9. Fault estimation for 14 health parameters using a multi-point method (first example). 

In the following, the results are presented for several other examples, which are presented in Figures 10 to 12. 



   

 

 
Fig. 10. Fault estimation for 14 health parameters using a multi-point method (second example) 

 
Fig. 11. Fault estimation for 14 health parameters using a multi-point method (third example). 

 
Fig. 12. Fault estimation for 14 health parameters using a multi-point method (fourth example). 

In all of these figures, orange bars are related to the estimated value of health parameters by the UKF. The 
blue bars are the given faults to the model health parameters. At the bottom of each figure, the numbers written 
in the first row are the model health parameters fault values and the second row numbers are the fault of the 
health parameters that UKF has estimated. 

As can be seen from all above figures, the smearing effect continues to be present even for small quantities. 
For this reason, a certain number of health parameters are assumed to be fixed with zero deviation in the model 
for each run (use of bank of KFs). For example, a set of 16 KFs have been used for the engine model with 15 
different sets of health parameters as illustrated in Table 5 and Table 6,

 with faulty compressor (the first three health parameters are assumed to be deviated 2% from their 
healthy conditions). The estimation results from each parameter sets are demonstrated. By averaging the 



   

 

numbers in each health parameters, the final estimations are demonstrated at the last line. The average numbers 
are considered to be zero if less than a constant limit. The same procedure is repeated with other sets of health 
parameters for a model with a faulty gas generator (4th, 5th, 12th and 13th health parameters are assumed to be 
deviated 2% from their healthy conditions). 

 
Table 5. The Health parameters estimation with the use of BKs for the engine model with faulty compressor. 

 

Table 6. The Health parameters estimation with the use of BKs for the engine model with faulty GG. 

 

4. Conclusion 

GPA is one of the methods used for fault detection for gas turbine engines which can be based on a linear or 
nonlinear model. A general algorithm for detecting the gas path diagnosis is using an estimation method with a 
UKF algorithm based on a single operating point (the classical method) although it has some disadvantages such 
as the lack of measurements and consequently, the uncertainty of the system, as well as the estimated fault. Also, 
by using this method, the previous knowledge of the turbine condition is required to determine the intensity of 
the fault. To overcome these limitations, the multi-point method was used. Using this method, the health 
parameters were attributed to a faulty model and the UKF algorithm estimated the faults, based on multi 
operating conditions extracted from the IGT25 database. The results showed that attributed faults to health 
parameters were estimated with a much lower error than with the single-point method. Therefore, the multipoint 
application for UKF algorithm showed a significant improvement over the single-point mode in estimating the 
faults and the application of bank of KFs enhanced the smearing effect in both methods. 

References 

Barwell, M.J., 1987, COMPASS-Ground Based Engine Monitoring Program for General Applications, SAE technical paper 871734. 
Dewallef, P., Leonard, O., 2003, On-line performance monitoring and engine diagnostic using robust Kalman filter techniques, ASME Paper 

No. GT2003-38379. 



   

 

Doel, D., 1994. TEMPER-a Gas Path Analysis Tool for Commercial Jet Engines, Transactions of the ASME, J. of Engineering for Gas 
Turbines and Power, Jan 1994, 116, 82-89. 

Doel, D.L. 1993. An assessment of weighted-least-squares based gas path analysis. In: Proceedings of the ASME 1993 international gas 
turbine and aero-engine congress and exposition, Cincinnati, OH, 2427 May. 

Ghafir M.F.A, Li, Y.G., Wang, L. Creep life prediction for aero gas turbine hot section component using artificial neural networks. J Eng 
Gas Turb Power 2014; 136:031504 

Kobayashi, T., Simon, D.L., 2003, Application of a bank of Kalman filters for aircraft engine fault diagnostics, NASA/TM-2003-212526.  
Kobayashi, T., Simon, D.L., Litt, J.S., 2005, Application of a constant gain extended Kalman filter for inflight estimation of aircraft engine 

performance parameters, ASME Paper No. GT2005-68494.   
Liu, Y.,Su, M. Nonlinear model based diagnostic of gas turbine faults: a case study. In: Proceedings of the ASME 2011 turbo expo: turbine 

technical conference and exposition, Vancouver, BC, Canada, 6-10 June 2011, 1-8. New York: American Society of Mechanical 
Engineers. 

Montazeri-Gh, M., Abyaneh, S., 2017, Error Evaluation of Hardware-in-the-Loop Simulation of a Gas Turbine Engine Fuel Controller, 
Transactions of FAMENA 41(4), 47-60.  

Panov, V., 2013, Model-based control and diagnostic  techniques for operational improvements of gas turbine engines, 10th European Turbo-
machinery Conference, Lappeenranta, Finland, ETC-10-B098. 

Pu, X., Liu, S., Jiang, H., et al. 2013. Sparse Bayesian learning for gas path diagnostics. J Eng Gas Turb Power 2013, 135, 071601.  
Stamatis, A., Mathioudakis, K., Smith, M., Papailiou, K. Gas turbine component fault identification by means of adaptive performance 

modeling. ASME Paper 90-GT-376, 1990. 
Stamatis, A.G. 2011. Evaluation of gas path analysis methods for gas turbine diagnosis, J Mech Sci Technol 25, 469. 

https://doi.org/10.1007/s12206-010-1207-5. 
Tsoutsanis, E., Qureshi, I., Hesham, M., Performance diagnostics of gas turbines operating under transient conditions based on dynamic 

engine model and artificial neural networks, Engineering Applications of Artificial Intelligence 126, Part B, 2023. 
https://doi.org/10.1016/j.engappai.2023.106936. 

Urban, L.A. 1969. Gas Turbine Engine Parameter Interrelationships , 1st edition, 1967, 2nd edition, 1969 (HSD UTC, Windsor Locks, Ct.).  
Urban, L.A. 1975. Parameter selection for multiple fault diagnostics of gas turbine engines, AGARD-CP-165 ASME Paper 74-GT-62, J. 

Eng. Power , April 1975, 225 230. 
Verma, R., Roy, N., Ganguli, R. Gas turbine diagnostics using a soft computing approach. Appl Math Comput 2006; 172, 1342 1363. 
Volponi, A.J., DePold, H., Ganguli, R., Daguang, C., 2003, The use of Kalman filter and neural network methodologies in gas turbine 

performance diagnostic: A comparative study, ASME J. of Eng. for Gas Turbines and Power 125, 917-924.   
Wallin, M., Gronstedt, T., A comparative study of genetic algorithms and gradient methods for RM12 turbofan engine diagnostics and 

performance estimation, In: Proceedings of the ASME turbo expo 2004: power for land, sea, and air, Vienna, 14-17 June 2004, paper 
no.GT2004-53591. New York: American Society of Mechanical Engineers. 

 


