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Abstract 

Maritime traffic surveillance and management have long been critical focal points in the maritime traffic field. The escalating 
complexity of traffic situations, marked by frequent multi-ship encounters, presents formidable challenges in achieving 
precise Maritime Situational Awareness (MSA), especially in intricate intersection waters. Therefore, this paper aims to 
develop an advanced methodology to enable maritime traffic complexity analysis and further enhance the interpretability of 
regional traffic situations. The first step involves constructing a conflict risk estimation model, adeptly accommodating both 
ship maneuverability and ship motion dynamics. Subsequently, numerous complex network metrics, including motif 
structural indicators, are employed to unveil the intricate nested interactions among multiple ships from various spatial 
perspectives. To address the collective effects among these indicators and establish hierarchical classifications of traffic 
complexity levels, a PCA-FCI assessment model is introduced. Comprehensive experiments, utilizing AIS data from the 
intersection area of Yangshan Port, is conducted to thoroughly evaluate the effectiveness of these models. The experimental 
results unequivocally demonstrate the capability of the proposed approach to comprehensively comprehend the entire traffic 
situation and issue timely warning alerts. As a result, this methodology holds immense promise for enhancing the intelligence 
of maritime surveillance systems. 
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1. Introduction 

Surveillance and management of maritime traffic are consistently at the forefront of research efforts in the 
field of maritime transportation. A pivotal component within the emerging Intelligent Transportation Systems 
(ITSs) is the development of intelligent Maritime Situational Awareness (MSA) techniques that take into 
account ship movement behaviors, collision risk estimation, and collision risk control. Notably, recent 
technological advancements, including Artificial Intelligence (AI), Blockchain, 5G, and big data, are rapidly 
transforming and enhancing the complexity of modern maritime transportation systems (Li et al., 2023; Li and 
Yang, 2023). In this evolving landscape, the maritime industry is undergoing a transition from traditional 
mechanical systems to digital systems. This transition marks the dawn of an era where achieving system 
intelligence and perception automation becomes increasingly feasible. In this context, there is a growing demand 
for innovative MSA tools to facilitate the establishment of ITSs and the automation of ship navigation. 

Assessing and evaluating the regional traffic situation is widely acknowledged as an effective tool in 
supporting intelligent maritime surveillance and management. These assessments provide a quantitative 
foundation for revealing the overall operational status of traffic at a macro-level, playing a crucial role in guiding 
and controlling anti-collision efforts (Xin et al., 2022b; Zhang et al., 2022). Nevertheless, the accurate 
assessment of traffic situations has become increasingly complex due to the rising volume of maritime traffic 
and the inherent dynamics of ship motion behaviors, especially in complex intersection areas. Maritime 
management authorities often designate these regions as official precautionary zones, which exhibit distinct 
characteristics, such as elevated traffic densities, a diverse composition of maritime traffic, and the presence of 
dynamic spatiotemporal ship movements (Xin et al., 2023b, 2022a). Consequently, these zones frequently 
witness risky traffic behaviors and multiple interrelated conflicts with nested structures, which present 
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substantial challenges for maritime operators in their efforts to quantitatively comprehend the overall traffic 
conditions. 

In response to the increasing need to improve the understanding of traffic situations, a multitude of techniques 
have been developed for estimating and assessing collision risks (Cao et al., 2023; Yu et al., 2023). These 
methodologies assist in identifying potentially hazardous scenarios and devising strategies to resolve conflicts. 
The widespread deployment of the Automatic Identification System (AIS) and the availability of extensive 
trajectory data have enabled the analysis of "ship traffic complexity", an emerging concept that facilitates a 
comprehensive grasp of overall traffic conditions. Particularly, complex network theory has gained popularity in 
analyzing traffic complexity, owing to its ability to unveil the topological properties of intricate interactions 
among multiple ships. Notable examples include the utilization of various complex network indicators to 
characterize the overall complexity of maritime traffic (Sui et al., 2020), explore both the topological and 
evolutionary characteristics of traffic (Xin et al., 2022b), and pinpoint critical target vessels for monitoring 
purposes (Sui et al., 2022). Research in this domain has illustrated its significant effectiveness in quantifying 
levels of traffic congestion, collision risks, and complex interactions among multiple vessels. Nonetheless, the 
unique traffic characteristics found in complex intersection waters present challenges to the practical 
applicability of these methods: 

To begin with, achieving precise real-time evaluation of collision risk for pairs of ships is a foundational 
requirement in the analysis of regional traffic complexity. However, the practical application of existing models 
faces formidable challenges due to factors such as varying ship maneuverability and dynamic ship motion 
behaviors. Integrating these elements into a collision risk assessment framework has the potential to create an 
adaptable approach for obtaining accurate risk assessments. Yet, this remains an unresolved challenge. 

Moreover, the assessment of regional traffic complexity goes beyond the mere scrutiny of simple pairwise 
collision risks. It demands a deeper understanding of the navigational complexity within scenarios characterized 
by multiple interrelated conflicts. Neglecting these characteristics fundamentally hinders the accurate 
interpretation of real regional traffic patterns. While some studies have made progress in revealing basic traffic 
topological properties within specific spatiotemporal scenarios, they provide an incomplete view of the nested 
interdependencies among multiple ships and face challenges in achieving reliable classification of traffic 
complexity levels (Sui et al., 2021, 2020). In essence, accurately characterizing traffic complexity from a 
topological structural perspective and subsequently classifying complexity levels are still largely unexplored and 
demand immediate attention. 

Considering these research gaps, a comprehensive model for understanding traffic complexity should include 
factors such as the dynamic risk associated with ship pairs in the presence of environmental disturbances and 
diverse ship movements. It should also account for the complex joint spatiotemporal interactions among multiple 
ships and offer a detailed assessment of complexity levels. Unfortunately, the field of maritime traffic 
complexity research remains relatively unexplored, and there are no existing studies that have presented a 
comprehensive solution to addressing these multifaceted challenges. Hence, the focus of this study is dedicated 
to the development of an integrated solution aimed at improving the interpretation of traffic scenarios and 
providing guidance for global collision risk management. The contributions of this research are outlined below. 

1. An innovative ship domain-based conflict prediction model is designed to accurately assess the risk of 
conflict between pairs of ships in intersecting water areas. This model takes into account various factors, 
including the manoeuvrability of the ships and their potential motion dynamics, which ensures its 
applicability across a wide range of encounter scenarios. 

2. This research presents a novel framework for modelling traffic complexity, aiming to quantify the 
intricate topological dependencies that arise in interdependent conflicts within specific regional water 
areas. In contrast to existing models that can only extract basic topological information using well-known 
complexity metrics, the proposed framework pioneers the use of advanced motif structure-based metrics 
to achieve a more detailed characterization of the structural complexity inherent in regional traffic 
conflicts. 

3. To evaluate traffic complexity comprehensively, an approach that combines Principal Component 
Analysis (PCA) with the Fuzzy Clustering Iterative (FCI) method is developed to allow to classify 
different levels of traffic complexity effectively. It can eliminate redundant information from various 
complexity metrics, while also providing a hierarchical description of traffic complexity levels. 

The rest of this paper is structured as follows: Section 2 introduce the proposed methodology for modelling 
and evaluating maritime traffic complexity. Section 3 encompasses the case demonstrations and application 
analysis. Section 4 outlines the conclusions. 



   

2. Methodology: Maritime traffic complexity modelling and evaluation 

In Figure 1, the primary processing modules of the proposed methodology for evaluating regional traffic 
complexity are presented. These modules are divided into three distinct functional components: 1) Ship-Pair 
Conflict Risk Estimation Module: This module is responsible for estimating the conflict risk between any pair of 
ships. It serves as the foundational component upon which the regional traffic complexity modeling and 
evaluation rely. 2) Traffic Complexity Modeling Module: The motif structure-based indicators are employed to 
quantify the topological complexity that arises among multiple dependent conflicts. 3) Traffic Complexity 
Evaluation Module: Building upon the previous modules, this module utilizes the PCA-FCI model to synthesizes 
multiple motif-structure based indicators, enabling precise classification of traffic complexity levels. Detailed 
technical insights into each of these modules will be elaborated in the subsequent subsections. 

 

 
Fig. 1. Research framework. 

2.1. Conflict risk prediction for ship pairs 

Accurately assessing collision risks between pairs of ships is a fundamental aspect of traffic complexity 
analysis. Various innovative concepts, such as near-miss (Zhang et al., 2015) and ship conflicts (Weng et al., 
2012; Xin et al., 2021), have been proposed to characterize potential collision risks involving ship pairs. In the 
present study, conflicts serve as the foundation for the analysis of traffic complexity. 

In general terms, a conflict is defined as a situation in which approaching ships would breach their minimum 
safety distance within a forward-looking time horizon (Hao et al., 2018). To detect conflicts, this study employs 
a Quaternion Ship Domain (QSD) model, which incorporates the influence of ship maneuverability. Recognizing 
that ships may change their motion behaviors, such as performing turning maneuvers, during encounters 
stemming from various factors like uncertain navigational intentions, an enhanced Closest Point of Approach 
(CPA)-based method is adopted. This method accounts for the potential dynamics of ship movements, thereby 
being able to accurately determine their actual closest approaching points within a foreseeable time horizon. 

 

 
Fig. 2. Example of a quaternion ship domain. 

Several geometric ship domain models have been introduced in the literature (Szlapczynski and 
Szlapczynska, 2017). However, among these models, the Quaternion Ship Domain (QSD) model stands out as 
the most advanced and practical one. The QSD model places significant emphasis on ships' maneuverability, 
taking into account their speeds and sizes (Bakdi et al., 2021; Wang, 2010). In Figure 2, Rf, Ra, Rs, Rp represent 
the domain radii in the fore, aft, starboard, and port directions, respectively. These parameters are influenced by 
the maneuverability of the ship and are considered as risk factors. Their determination can be outlined as 
follows: 
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where L kAD and kDT represent the coefficients linked to advance (AD) and 
tactical diameter (DT), respectively. The specific values of kAD and kDT offer valuable information regarding the 

-time speed (see 
(Wang, 2010) for details). 

 
Fig. 3. Example of a ship-pair encountering situation. 

By leveraging the above four radius parameters, a practical QSD model at any given point in time can be 
established, enhancing the ability to evaluate conflict risks. Ship domain-based conflict detection is typically 
categorized into four safety criteria (Szlapczynski and Szlapczynska, 2017). In this study, the third criterion is 
adopted, which states that neither of the domain areas of the encountering ships should be breached. This choice 
is driven by its ease of implementation and its consideration of the characteristics of both encountering ships. To 
go beyond the conventional binary evaluations of ship domain-based conflicts, which typically classify 
encounters as either safe or dangerous, a spatial risk model that incorporates an exponential decay function is 
introduced. This model is allowed to derive a more nuanced conflict risk score, which generates a continuous 
value falling within the range of 0 to 1 (Bakdi et al., 2021). Given two encountering ships, as depicted in 
Figure 3, the distance (i.e.,  from the center of Si to its domain boundaries along the line connecting the two 
ships can be calculated as follows: 

 (2)  

where  represents the polar angle measured in a clockwise direction from the heading of Si at time t, and the 
sign functions sgnx and sgny are defined as follows: 

 

 

Based on the above, an instantaneous risk score with Si as the own ship can be calculated by employing the 
following exponential decay function: 

 (3)  

where  represents the distance between Si and Sj at time t, and the decaying parameter ro is set to 0.5 
(Wang, 2010). It is evident that the smaller the value of , the higher the . In a similar vein, one 
can determine the value of  with Sj as the own ship. Since the values of  and  may not align due to 
the e varying degrees of domain invasion with different ships as the own ship, the maximum value between them 
is used as the instantaneous conflict risk between the encountering ships, as depicted below: 

 (4)  

It is crucial to highlight that (4) quantifies conflict risk at a precise time instance, whereas conflict 
encompasses the potential risk of encounters over a prediction horizon. As such, in this study, conflict risk is 
defined in terms of the maximum of  over a finite look-ahead period (Hernandez-Romero et al., 2019), as 
expressed below: 
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 (5)  

where T denotes the prediction time horizon. 
In accordance with (5), the calculation of instantaneous conflict risk at every time moment t  [0, T] 

throughout the entire duration presents a considerable computational burden. Consequently, this study opts to 
calculate the instantaneous conflict risk solely at the moment of minimum passing distance between ship pairs. 
To account for potential variations in ship movement dynamics, an enhanced Closest Point of Approach (CPA) 
method is employed for predicting this closest approaching points. Differing from the conventional CPA 
approach, which assumes that encountering ships will keep a constant speed in the near future, this method 
effectively incorporates the ships' turning behaviors. It accomplishes this by representing the dynamic future 
trajectories of the ships using a series of waypoints. Lines connecting successive waypoints form the future 
sailing route of the ships. The enhanced CPA method computes CPAs between all pairs of consecutive 
waypoints and then identifies the smallest CPA among them. Subsequently, the conflict risk at their closest 
approaching points based on the spatial risk model can be computed. 

2.2. Ship traffic complexity modelling 

After assessing conflict risks among ship pairs within a specified area of interest, the topological structure of 
ship traffic interactions becomes discernible. This structure can be elucidated through the lens of graph theory, 
wherein individual ships are represented as nodes, and conflicts between ship pairs are depicted as edges. The 
conflict risk values associated with these edges serve as weights. Building upon this foundation, the complex 
network metrics, including motif-based structural indicators, are adopted to unveil the intricate nested 
interactions among multiple ships from various spatially dependent perspectives. 

Previous research efforts (Sui et al., 2021, 2020; Xin et al., 2023a, 2022b; Zhang et al., 2019) have applied a 
diversity of network indicators to assess the complexity of ship traffic. These indicators used in this study 
include both macroscopic and microscopic metrics. Macroscopic metrics, such as number of ships and conflict, 
serve to reveal fundamental regional traffic characteristics. Additionally, in contrast to employing traditional 
microscopic network metrics that provide basic topological information, the motif-based indicators are 
introduced to offer a more detailed characterization of structural properties within a traffic complexity graph. 

 

 
Fig. 4. Illustration of 2 types of three-node motifs and 6 types of four-node motifs. 

Motif structures were initially introduced to capture higher-level structural information by exploring distinct 
connectivity patterns involving multiple nodes within a complex network (Milo et al., 2002). The exploration of 
motif structures provides a deeper understanding of nested interconnections among nodes, transcending basic 
topological structure analysis. Hence, they hold significant potential for revealing essential structural attributes 
inherent in complex networks. Most studies focus on the applications of three-node or four-node motif structures 
(Xu et al., 2023). This study therefore employs both three-node and four-node motifs to unveil rich topological 
information within a traffic complexity network. Figure 4 illustrates the structural graphs of these motifs. In 
conducting traffic complexity analysis, one can statistically identify the occurrences of these different motif 
structures within a network. A higher frequency of these structures indicates a more complex traffic situation. 

Consequently, a total of 10 indicators are employed. These indicators collectively facilitate a comprehensive 
understanding of complex traffic situations. 
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2.3. Traffic complexity level classification 

Evaluating regional traffic complexity comprehensively by integrating multiple complexity indicators 
presents a significant challenge, primarily due to the inherent interplay and interdependence among these 
indicators. To address this challenge, this study employs a combination of PCA and FCI methods. PCA is used 
to address the joint effects among indicators, while FCI establishes a hierarchical classification of traffic 
complexity levels. 

PCA is a well-established data-driven technique commonly used for dimensionality reduction. It performs 
multivariate analysis to reduce the dimensionality of the data while preserving as much valuable information as 
possible. Given the potential presence of high correlations among the complexity indicators adopted, conducting 
PCA analysis for dimensionality reduction is a crucial step. For a given set of traffic scenario samples denoted as 
X = (xij) , where xij represents the ith complexity indicator corresponding to the jth traffic scenario, n is the 
number of samples, and m represents the number of indicators, standardization is the initial step to ensure that 
the indicators are on a consistent scale. This standardization process is performed based on the following 
equation: 

 (6)  

where ij is the standardized value of xij, uj and j are the mean and standard deviation of (x1j, x2j xnj) 
respectively. Subsequently, by performing PCA, the original standardization data  can be projected into a new 
feature space using the constructed projection matrix, as shown below: 

 (7)  

where Y = (yij)  denotes the transformed dataset, and W = [v1, v2 vk] constitutes the projection matrix with 
vk signifying the kth largest eigenvalue of the covariance matrix of . 

On the above basis, the classification of traffic complexity levels can be further conducted using FCI. As 
opposed to these traditional methods tied to evaluation criteria, this approach performs well in providing a robust 
hierarchical analysis for high-dimensional assessment issues, without necessitating prior information (He et al., 
2011). The fundamental principle of this method lies in optimizing membership assignments of assessment 
samples across different performance standards, which, in the context of this study, correspond to traffic 
complexity levels. This optimization is based on an objective function, as elaborated below: 

 (8)  

where U = (uri)  denotes the membership matrix for the sample set, S = (sjr)  denotes the class centre matrix 
for complexity levels, c is the number of complexity levels. Equation (10) aims to minimize the quadratic sum of 
the Euclidean distances between all samples and different fuzzy class centers. The optimization step for (8) can 
be found in the work of (He et al., 2011).  

As a result, the primary steps for conducting traffic complexity evaluation are outlined as follows: 
Step 1. Extract traffic scenarios based on real AIS data in the studied waters and calculate their complexity  

                 indicators to construct the sample matrix X = (xij) ; 
Step 2. Utilize (6) to standardize the X = (xij)  to ensuring uniform scaling; 
Step 3. Implement PCA to obtain the projected data matrix Y = (yij)  using (7); 
Step 4. Perform FCI for different values of c to search for the optimal c, and then obtain the optimal  

                U = (uri)  and S = (sjr) ; 
Step 5. Assess the complexity level for each traffic scenario using the following equations: 

   (9)  

  where  reveals the traffic complexity level determined by the maximum membership of the i-th  
  traffic scenario. 

3.  Case study and analysis 

3.1. Research area and data collection 

In order to assess the effectiveness of the proposed traffic complexity methodology, a intersection area within 
Yangshan Port is slected as the studied site. This particular region plays a pivotal role in facilitating the passage 



   

of large-scale ships entering and departing from Yangshan Port (refer to Figure 5). It represents a typical 
intersection water area where multiple ship encounters frequently occur. To gather the necessary data for this 
study, three months' worth of AIS data spanning from April to June 2020 is collected. The preprocessing of this 
AIS data comprises two primary steps. First, the outlier elimination techniques and trajectory consistency 
methods (Kang et al., 2018; Zhao et al., 2018) are employed by referring to previously established works. 
Subsequently, a linear interpolation is conducted to ensure that the extracted traffic scenario at any given 
moment is complete. Through these preprocessing steps, substantial dataset of reliable and effective traffic 
scenarios can be obtained. This dataset will serve as the foundation for the analysis and evaluation of traffic 
complexity methodology. 

 
Fig. 5. Research water area. 

3.2. Traffic topology modelling analysis 

Figure 6 (a) provides a visual representation of the topological configuration of a particular traffic scenario 
derived from historical AIS data within the designated research zone. This configuration has been formulated 
based on the assessment of conflict risks between any pairs of ships. Within the diagram, the blue dots denote 
the spatial arrangement of ship traffic, while the red lines signify instances of conflict between pairs of ships. 
The thickness of these red lines correlates with the degree of conflict risk. Notably, it becomes apparent that 
intricate nested conflicts are prevalent among multiple ships, a phenomenon primarily attributed to the elevated 
traffic density and frequent interactions among multiple ships within this geographical region. 

 
Fig. 6. Illustration of traffic situation at one specific moment. (a) Visualization of ship traffic topology;  

(b) illustration of detailed conflict analysis between Ships A and B. 

The foundational step in the analysis of regional traffic complexity revolves around the accurate assessment of 
conflict risk between pairs of ships. Validating the effectiveness of the proposed conflict estimation model is of 
utmost importance in this regard. The proposed model takes into consideration the influence of both ships' 
manoeuvrability and the dynamic characteristics of ship movements. To illustrate the incorporation of these two 
critical factors, refer to Figure 6 (b). In this figure, the 'x' symbols denote the current positions of Ships A and B, 
while the solid lines represent their future trajectories based on their navigation plans. For the experimental 
analysis, the navigation plans of each ship, represented as sequences of waypoints, are extracted from historical 
AIS trajectory data using the Douglas-Peucker (DP) algorithm. Building upon this foundation, an enhanced 
Closest Point of Approach (CPA) method is adopted to identify the nearest approaching positions of Ships A, B, 
marked as 'o' in Figure 6 (b). Subsequently, the conflict risk between these two ships are quantified as 0.67 using 
the spatial risk model that incorporates the QSD. The QSDs depicted in the figure are constructed by taking into 
account the manoeuvrability limits related to the real-time navigation speed of each ship. It is worth noting that 
the efficacy of the QSD model in accommodating ships' manoeuvrability limits has been previously 



   

demonstrated in the work of (Wang, 2010). In contrast, employing the classic CPA method, which assumes that 
encountering ships adhere to linear trajectories as indicated by the dotted lines in Figure 6 (b), would erroneously 
predict that these ships will move away from each other in the near future. This prediction does not align with 
reality, as the two ships are actually headed for a crossing encounter. Such disparities can lead to confusion 
among practitioners in assessing genuine conflict risks. Consequently, the improved CPA model holds practical 
significance within the research area, primarily owning to its incorporation of dynamic ship motion 
characteristics. 

3.3. Training results of complexity classification model 

To build the PCA-FCI evaluation model, it relies on a vast dataset comprising traffic scenarios extracted from 
historical AIS data as the training set. Initially, Figure 7 visually depicts the cumulative variance explained by 
the principal components derived from PCA processing. Typically, the first few principal components that 
collectively account for a substantial portion of the variance, often surpassing 95%, are kept. Notably, in this 
instance, the first 3 principal components elucidate 95.73% of the variance, signifying a strong correlation 
among the selected complexity indicators. This observation underscores the importance of dimensionality 
reduction as a prerequisite for the subsequent classification of traffic complexity levels. Consequently, the first 
three principal components are preserved for further FCI training, which help discern and categorize traffic 
complexity levels.  

 
Fig. 7. Cumulative explained variance after PCA processing. 

Figure 8 provides further insights into the results obtained during the FCI training process, considering 
different numbers of complexity levels as input parameters. As depicted in the figure, the elbow method 
identifies 'c = 4' as the optimal number of complexity levels. Consequently, the traffic complexity is classified 
into four distinct groups: Low Complexity (LC), Medium Complexity (MC), High Complexity (HC), and 
Extremely High Complexity (EHC). 

 
Fig. 8. Relationships between number of complexity levels and objective values. 

 
3.4. Illustration of traffic complexity assessment 

Figure 9 provides an illustrative example with a 100-minute traffic complexity evaluation within the research 
area. As depicted in Figure 9 (a), the membership distributions of different complexity levels shown significant 
temporal evolution, which provides a nuanced hierarchical depiction of traffic conditions. Figure 9 (b) illustrates 
the evolution of the comprehensive complexity evaluation indicator. These evaluation results collaboratively 



   

assist in the comprehension of regional traffic situations. Notably, these figures reveal the temporal intervals 
characterized by elevated traffic complexity, spanning approximately from the 30th to the 45th minute. This 
insight provides valuable guidance for maritime operators in identifying potential instances of heightened 
complexity, thereby bolstering their situational awareness. Additionally, Figure 10 furnishes detailed evaluation 
results for specific time points, specifically at t = 1, 11, 21, and 31 minutes. These outcomes offer a 
comprehensive exposition of each scenario's traffic topological structure, complexity indicator values, 
membership distributions of complexity levels, and the comprehensive assessment indicator value. As a whole, 
these insights foster a more thorough grasp of the traffic complexity evaluation process, offering robust support 
to maritime controllers in designing and implementing reliable strategies for managing and mitigating high-
complexity traffic situations. 

 
Fig. 9. A case illustration of traffic complexity evaluation. (a) Membership distribution of traffic complexity over time;  

(b) traffic complexity evaluation indices over time. 

 
Fig. 10. Traffic complexity evaluation analysis at time t = 1, 11, 21, and 31 min. 

4. Conclusion 

In this study, an advanced traffic complexity methodology is developed aimed at facilitating the 
comprehensive interpretation of the overall traffic conditions within a specific water area of interest. This 
methodology introduces several innovative features: 1) A novel conflict risk estimation approach is designed to 
incorporate the influence of both ship manoeuvrability and ship motion dynamics; 2) the utilization of traffic 
complexity measurement indicators, specifically motifs, enables a more detailed characterization of the intricate 
structural complexity inherent in multiple nested conflicts; 3) the PCA-FCI assessment model not only considers 
the joint effects among these indicators but also establishes a hierarchical classification of traffic complexity 
levels simultaneously. To validate the effectiveness of the proposed methodology, several experiments are 
conducted using real-world data. These experiments serve to demonstrate and validate the superiority of the 



   

approach. Importantly, the proposed methodology enhances the interpretability of traffic patterns, particularly 
when maritime operators are confronted with high-complexity situations. It facilitates a more nuanced 
understanding of traffic situations, further supporting the deployment of targeted strategies and manoeuvring 
guidelines aimed at reducing traffic complexity on a global scale. Consequently, the proposed methodology 
provides valuable support to maritime surveillance operators in advancing operational safety management 
without necessitating additional investments in infrastructure upgrades. Furthermore, it holds the promise of 
seamless integration into intelligent maritime surveillance systems, contributing significantly to the evolution of 
smart ports. 
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