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Abstract 

To improve bridge structural health monitoring (SHM) accuracy and efficiency, this paper proposes an algorithm for 
constructing a spatio-temporal graph based on vibration signal fusion of truss bridge fracture data. First, a cross-edge weight 
standard deviation (C-EWSD) feature is proposed to fuse the multi-channel sensor spatio-temporal data. Then, the C-EWSD 
features are combined with the time-frequency features to extract the node spatio-temporal features. The truss bridge node 
spatio-temporal graph signal is established according to the spatio-temporal characteristics and the spatial node topology 
graph. Determine the bridge structure warning position from the node offset on the spatio-temporal graph. The experimental 
results show that the proposed algorithm can effectively judge the faults and put forward the early warning on the truss bridge 
fracture diagnosis, which has a good engineering application prospect. 
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1. Introduction 

Given that structural health monitoring (SHM) of bridges is crucial for urban transport and people's lives, 
bridge health diagnostics based on vibration signals are of great significance in engineering. With the 
development of intelligent sensors, communication technology, and intelligent algorithms, the continuous 
monitoring process of the dynamic response of civil engineering and buildings has become possible. Big data 
processing technology in the structural health monitoring process and data science and engineering technology in 
the computer field have been extensively studied and applied to dynamic monitoring of civil engineering 
structures (Delgadillo and Casas, 2019; Kim et al., 2013). For example, the data collection algorithms based on 
compressed sampling (Bao et al., 2011, 2018), the abnormal data diagnosis methods using deep learning 
algorithms (Xu et al., 2018), the crack identification methods using computer vision technology (Fischer and 
Igel, 2010; Liu et al., 2017; Xu et al., 2019), and bridge health assessment using machine learning algorithms 
(Delgadillo and Casas, 2019; Li et al., 2018; Wei et al., 2017) and other methods. However, monitoring and 
analyzing the entire building group or composite structure using traditional single-point sampling analysis is 
difficult. Therefore, new theories need to be introduced to establish a system-level structural health monitoring 
system. 

Graph Signal Processing (GSP) is a new signal processing framework in irregular domains that extends from 
discrete signal analysis (Sandryhaila and Moura, 2013, 2014). GSP can extend single-point time series signal to 
multi-element information fusion analysis and can judge the health status of equipment operation 
comprehensively (Liu and Wang, 2001). The spatio-temporal graph is a new signal processing framework based 
on non-sparse dictionary representation and uses edges to describe the correlation of signals (Mei and Moura, 
2016; Ortega et al., 2018). SHM based on spatio-temporal signals is an important research field with wide 
applications in engineering, construction, aerospace and other fields. Scholars have done a lot of research in the 
field of SHM based on spatio-temporal signals. In constructing and predicting sustainable urban development, 
Zhang et al. (2023) proposed spatio-temporal graph learning based on adversarial adaptivity for modeling urban 
sensing systems. Zhou et al. (2024) introduced complementary spatio-temporal learning based on hints of 
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ComS2T for augmenting the evolution of data-adaptive models. In the field of mechanical fault diagnosis, Song 
et al. (2022) developed a spatio-temporal neural network (STN) model for fault diagnosis of bearings, which is 
constructed by a multilayer fusion of long-term memory network features and a Convolutional Neural Network 
(CNN). To accurately predict the flow state prediction of gas-water two-phase, Li et al. proposed a method of 
extracting spatio-temporal signatures of the process from multimodal measurement signals, which visually 
indicates the transition state by quantifying the long-term waveform variations of the state signatures and 
equilibrium relationships (Li et al., 2023). Spatio-temporal signal structural health monitoring aims to monitor 
and analyze signals inside structures in real-time. This method helps to detect possible structural defects, damage 
and failures in advance. Then take corresponding maintenance or reinforcement measures to ensure the safe and 
reliable operation of the structure. However, there are few studies in the spatio-temporal area in bridge structure 
health monitoring. 

The truss bridge is a multi-node statically indeterminate structure. During operation, the bridge will be 
affected by vehicle, ground, and wind loads, so data monitoring in time and space is necessary for bridge health 
monitoring. Single sensor data information is difficult to accurately reflect the health status of the truss, we 
proposed a truss bridge fracture diagnosis algorithm based on spatio-temporal graph signals. The main 
contributions of this article are listed as follows: 

(1) We propose a spatio-temporal graph construction algorithm for truss bridges. Combining the efficient 
multi-sensor system and the bridge structure, a data fusion spatio-temporal graph model based on bridge spatial 
nodes and digital signals was established, which can intuitively reflect the node-to-node relationship on the 
graph and enhance the degree of data visualization; 

(2) We propose a signal contrast feature of cross-edge weight standard deviation (C-EWSD). C-EWSD 
reflects the correlation and change of node-to-node relationship in the time dimension, spatial dimension and 
different health status conditions. C-EWSD features are combined with time-frequency features for data 
enhancement to obtain fusion coefficients to reflect the correlation between nodes; 

(3) We constructed a truss bridge fracture diagnosis model based on vibration signals. The correlation 
changes between nodes on the spatio-temporal graph can reflect the health status of the bridge, and visual 
warning information is provided for the damage location. 

2. Theory 

To establish the spatio-temporal relationship between bridge nodes, we propose a spatio-temporal graph 
construction algorithm based on multi-channel vibration signals. The algorithm flow is shown in Figure 1. 

 

 
Fig. 1. The flowchart of the proposed method:  

(a) Signal processing: Measure 8-channel vibration data from the experimental bridge and perform data alignment and cutting;  
(b) Bridge modeling: Establish a 3D model of the bridge, mark nodes, and establish node spatial relationships;  

(c) Feature extraction and weighting: Select 5 sensitive features from 39 time-frequency features, intercept the main  
signal components, and calculate the correlation coefficients between nodes based on the C-EWSD features;  

(d) Spatio-temporal graph: Generate spatiotemporal graph signals based on correlation coefficients and spatial relationships between nodes.  



The algorithm is based on the proposed C-EWSD metrics combined with the time-frequency domain metrics 
to establish the correlation coefficients between nodes. The node-to-node distance on the graph is updated based 
on the node spatial and correlation coefficient, and a spatio-temporal graph signal that can provide early warning 
of damage is established. Specifically, the algorithm integrates the spatial nodes of the bridge and the time-series 
vibration signal of the entire process of vehicles passing through the bridge. First, we built the bridge's spatial 
relationship through 3D modeling and a complete experimental device. Secondly, in the vehicle-bridge joint 
experiment, we collected the vibration signals of multiple nodes at the same time to establish the spatio-temporal 
relationship: in the time dimension, the time series signal of the vehicle passing through the bridge was collected 
from each node; in the spatial dimension, we obtain the vibration signal of each node at the same time point or 
same time interval. The spatial dimension and the time dimension can enhance each other's relation to establish 
the correlation between nodes more accurately. The correlation is a fusion correlation of time series vibration 
signals based on spatio-networks. We collected continuous data from vehicles passing through nodes equipped 
with sensors on the bridge. The signal of vehicles passing through different nodes in different time intervals 
through data interception established a strong correlation between nodes from the spatio-temporal perspective. 
 
2.1. Signal processing 
 

In this experimental bridge, 29 nodes were labeled for marking and installing sensors, as shown in 
Figure 2(a). The start and stop of data collection are controlled manually, so there is a null-acquisition time at the 
beginning and end of the detected data (that is, the time gap between data collection instrument collection and 
vehicle operation). The original data must be aligned and segmented to obtain data collected from different 
nodes at different time intervals. As shown in Figure 2(b), this paper divides the bridge truss segment according 
to the node distribution. It divides the bridge into 7 segments, each corresponding to different time and spatial 
nodes. Take the data  of 8-14 main truss fractures as an example.  contains 8-channel data of length L. After 
repeated experiments, the vehicle running time  when speed is 0.1m/s. This paper designs a null-
acquisition time calculation algorithm to intercept valid data. There is a large energy difference between the 
connection section of the static signal and the operating signals' connection section. Removing the null-
acquisition time can get the optimal signal period.  

 

 
Fig. 2. Bridge 3D modeling and signal segmentation basis. 

First, the energy changes at the start and stop moments, the moving average partial energy value method is 
used to calculate the null-acquisition time  at the beginning. The signal after the vehicle starts and the signal 
before it stops have higher energy values due to vehicle movement. Therefore, the data with a length of at the 
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starting and end are intercepted respectively. The upper envelope signal is used as an energy measure to 
calculate the upper envelope average : 

                                                                                        (1) 

where  is the envelope calculation and  is the moving average start.  
If the two segments of the intercepted signal include the null-acquisition time,  is lower than  of 

the signal at vehicle movement, so  is the starting time corresponding to when  is the largest, which is the 
starting null-acquisition time : 

                                                          (2) 

where the length of each move interval of  is  and  is the sampling frequency. The 
new data set excluding the null-acquisition time is , where . 

The distance between the vehicle and the sensor impacts the signal. We discarded the data whose vehicles 
were far from the sensor for dimensionality reduction. As shown in Figure 1, only the data segments collected 
when the vehicle passes through this node and adjacent nodes are retained. When a vehicle passes through a 
node, the signal segments captured by the sensors on the node are defined as the primary signals and the signal 
segments captured by the sensors arranged in the neighboring nodes are defined as the secondary signals for that 
node. 
 
2.2. Cross-edge weight standard deviation calculation 
 

To extract the spatio-temporal correlation between nodes, this paper creatively proposes the cross-edge 
weight standard deviation (C-EDSW) feature extraction algorithm, as shown in Figure 3. In this paper, the 
vehicle is the motion excitation source, and the excitation points are the four wheels of the vehicle, which 
produce signal features possessing a correlation with the motion path. The C-EDSW between nodes is a feature 
based on the signal waveform and energy. The nodes of the truss bridge are connected similarly and the physical 
connection between neighboring nodes is transmissible. We make two assumptions: a. When the vehicle passes a 
fixed distance before and after each node, the signal collected by the sensors arranged at the node are similar; b. 
The signals collected by the sensors at the neighboring nodes are highly similar because of the transmissibility of 
the physical connection. 

 

 
Fig 3. The flowchart of the proposed C-EDSW method. 



Based on the spatial relationship of the bridge, we define the nodes with spatial connection as associated node 
pairs, which means the two nodes have a neighboring relationship, such as node P7 and node P8, nodes P8 and 
node P14. It is easy to see that all node pairs are in the same time interval or adjacent time intervals. Therefore, 
we calculate the association relationship between nodes  and  in two cases, i.e., the two nodes are in the 
same or adjacent time intervals. 

(1) Nodes  and  are in same time interval 
 and  are the complete signals collected by the sensors deployed on nodes  and . The 

corresponding time interval where nodes  and  are located is . There are 6 data segments used to calculate 
the node relationship, as shown the C-EWSD of ch2 and ch6 in Figure 3. The envelope is calculated by moving 
window local maximum method: 

                                                              (3) 

where  is the data segment corresponding to time interval  of the signal collected by the sensor Channel 
(a) on  (i.e., the data  is the signal when the vehicle passes through ),  is the envelope of 

,  is the length of , and  is the sliding window width of the envelope. 
When nodes  and  are in the same time interval, the C-EWSD between   and  is defined as the 

standard deviation of edge weight (EWSD) of two-channel data on the same time interval when the vehicle 
passes through the two nodes and the neighboring nodes, i.e., the SDEW of the data on the time interval ,
and  

                                                                                                            (4) 

                                                                                                     (5) 

                                                                                                     (6) 

The C-EWSD between nodes  and  in the same time interval is defined as: 

                                                                                                      (7) 

where , the three parameters are dynamically adjusted according to the training results. 
(2) Nodes  and  are in adjacent time intervals 
When  and  are in adjacent time intervals: and As shown the C-EWSD of ch2 and ch6 in Figure 3, 

here are four signal segments in the two node channels used to calculate C-EWSD of  and : 
 from sensors on  and  corresponding to and , respectively. 

                                                             (8) 

where  is the data segment corresponding to time interval  of the signal collected by the sensor on . 
When nodes Pa and Pb are in different time intervals, the C-EWSD between   and  requires to calculate: 

the EWSD of  and  when the vehicle passes nodes  and , the EWSD of  and  
from two sensors corresponding to , the EWSD of  and  from two sensors corresponding to 

: 

                                                                                                         (9) 

                                                                                                           (10) 



                                                                                                   (11) 

The C-EWSD between nodes Pa and Pb in the adjacent time intervals is defined as: 

                                                                                                           (12) 

 

2.3. Spatio-temporal graph construction based on data feature fusion 
 

Graph learning extends the traditional single-node analysis to an intelligent diagnostic system with multi-
source information fusion. The graph signal model is established rely on the "Node-Edge-Neighbors" system, 
which can be used to establish a system-level intelligent diagnostic system for structural health monitoring. In 
the " Node-Edge-Neighbor " relationship, the " Node " represents the sample object, the "Edge" is the 
relationship between the node and the proximity of the node, the "Neighbors" is the mutual adjacency of nodes. 
The length or diameter of the edge represents the weight of the relationship between the two neighboring points. 
The edges of directed graph have directionality. In this paper, we propose a data fusion algorithm to construct a 
spatio-temporal graph based on vibration signals. By fusing SDEW feature and other time-frequency features to 
build the weight between nodes. The node coordinates of the graph are updated according to the weight 
information and the original 3D coordinates. The location of defects can be determined from the node offsets 
effectively. 

In this study, the graph structure is defined as: 

                                                                                                                                                          (13) 

where  is the point set, including the node set and 3D coordinate of m nodes, the diagonal matrix 
is the edge set, containing the association and distance information, and  is the neighbor set, 

containing the neighborhood information of each node. 
Bridge is a fixed structure, the neighbor set  is fixed. The point set  and edge set  change in the iterative 

calculation. The specific calculation steps are: 
(1) Select SDEW and time-frequency features to calculate the correlation weight between nodes: 
We designed a self-weighting analysis algorithm to measure the correlation between nodes (Li et al., 2021). 

Five sensitive features were selected from 13 time-domain metrics, 11 frequency-domain metrics, and 15 
statistical-domain metrics, which were used to build the feature matrix :  

                                                                                                     (14) 

Where  is the proposed C-EWSD, the five sensitive features are Root Mean Square ( ), Pearson's 
Correlation coefficient ( ), Phase correlation ( ), Power Spectral Density ( )and Spectral Cosine 
Similarity ( ). Among them, and  are inverse indicators, and the other three are positive indicators. 

(2) Normalization 
Calculate the weight coefficient  of the node based on the feature matrix : 

                                                                                                                                                 (15) 

                                                                                                                                      (16) 

where  is coefficient matrix. 
Convert weights to distance multipliers  between nodes and normalize: 

                                                                                                                                                (17) 

(3) Spatio-temporal graph node update 
The updated edge set  is established based on the initial node edge set :  

                                                                                                                                           (18) 

  (19) 
The spatio-temporal graph signals in different health states can be drawn through matrices  and . Changes 

in the distance between nodes can provide early warning of node damage information on the graph. 



3. Experimental verification 

The experimental device used in the paper is shown in Figure 4. The experimental device simulates the 
operation system of a two-section continuously supported highway steel truss bridge. The experimental setup 
consists of three reinforced concrete abutments, two steel truss bridges, a vehicle start-stop buffer section, and 
several vehicles, which can simulate a complete vehicle-bridge operation system. In this experiment, 8-channel 
vibration signal data sets were recorded under three health conditions, recorded as (normal),  (P8-P14 truss 
fracture), and  (P6-P12 truss fracture). 

 

 
Fig. 4. Experimental truss bridge. 

In this experiment, the and  will be compared. When the truss between two nodes is damaged, the 
correlation and transitivity between the signals collected by the nodes at both ends of the truss will change. In 
this article, feature extraction is used to calculate this correlation or transitivity change. A spatio-temporal graph 
in two health states is established based on different feature relationships, and the fault location is determined 
based on the node distance on the graph. 

 

 
Fig. 5. 8-channel sensor monitoring data. 

The 8-node vibration signal monitored using an 8-channel sensor is shown in Fig 5. The signal is segmented 
and dimensionally reduced according to the method proposed in this article. The extracted C-EWSD feature in 
the two health states are shown in Fig 6. It can be seen from the figure that when the truss at positions P8-P14 
suffers from fracture damage, the C-EWSD feature metric on P8-P13, P8-P14, P8-P15 change significantly. 
Therefore, it can be preliminarily judged that the correlation between the signal at positions P8-P13, P8-P14, P8-
P15 is reduced, and the faulty truss is related to position P8. 



 
Fig. 6. Comparison of data C-EWSD features for two health states. 

The sensitive features of the signal are further extracted for feature fusion. The feature matrix of  is shown 
in Table 1. Calculate the association weights and  based on the fused features. After 
normalization, the node set is updated, the spatio-temporal graph and distance matrix in the two health states are 
obtained, as shown in Figure 7. 

Table 1. Feature matrix of S2 data. 

Associated node pairs C-EWSD      

P7-P8 0.0043 0.0123 0.2013 0.3115 0.5931 0.6651 

P7-P13 0.0046 0.01 0.2307 0.0633 0.6730 0.8146 

P8-P9 0.0047 0.0131 0.3433 0.1336 0.5464 0.7423 

P8-P13 0.0029 0.0113 0.4172 0.2597 0.8186 0.8735 

P8-P14 0.0031 0.0084 0.3043 0.1553 0.8893 0.9028 

P8-P15 0.0032 0.0099 0.2678 0.33 0.7823 0.8909 

P9-P15 0.0039 0.0067 0.0858 0.7176 0.7407 0.6855 

P12-P13 0.0020 0.0088 0.1132 0.017 0.0498 0.8142 

P13-P14 0.0019 0.0051 0.1146 0.1119 0.8841 0.9120 

P14-P15 0.0022 0.0052 0.0389 0.0597 0.8749 0.8954 

P15-P16 0.0019 0.0102 0.5918 0.1969 0.9086 0.9076 

 
The node P8 on the bridge is close to the five directly adjacent nodes (P7, P9, P13, P14, P15), especially the 

nodes P7 and P14 in Figure 7 (a). When the P8-P14 main truss breaks, the distance between the two nodes on the 
graph obviously increases. On the contrary, the data correlation with P13 and P15 has been strengthened. From 
the physical structure point of view, the P8 node is located on the upper layer of the bridge deck and is connected 
to the three bridge deck nodes P13, P14, and P15 through trusses. In the healthy state, node P14 is closest to P8 
and has the strongest correlation. When the main trusses P8-P14 break, the truss structure of P8 and the bridge 
deck changes, and the original three truss connections are reduced to two. This directly leads to the 
transformation of the super-statically determinate structure between the four nodes P8, P13, P14, and P15 into a 
statically determinate structure. Therefore, the correlation between P8-P13 and P8-P15 is enhanced. However, 
P14 and P8 are no longer directly related but need to pass the correlation through other nodes such as P13 and 
P15. There is a significant decrease in the correlation of the analysis of vibration signals monitored from P8 and 
P14. From the data analysis, it can be effectively determined that there is an obvious failure in the P8-P14 main 
truss. 
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Fig. 7. (a) Spatio-temporal graph in normal state; (b) Spatio-temporal graph of P8-P14 truss fracture. 

4. Conclusion 

This paper proposes a spatio-temporal graph construction method based on vibration signals to study damage 
location and health monitoring of truss bridges. The C-EWSD feature extraction algorithm based on vibration 
signals is proposed to establish a correlation index between monitoring nodes. C-EWSD is used to fuse time-
frequency sensitive features to develop a comprehensive evaluation index of the correlation between nodes. 
Based on the spatio-temporal signals monitored by multi-channel sensors, the spatio-temporal graph relationship 
between nodes is established. We built a truss bridge structural health monitoring test bench to perform data 
verification. The location of the fault can be effectively determined based on changes in distance between nodes. 
After data verification under different health states, this algorithm can effectively determine the fault location 
information of the truss bridge. 

In future research, we will integrate multi-dimensional data and add different node combination information 
to comprehensively monitor the bridge status. At the same time, we use data dimensionality reduction algorithms 
to analyze the correlation and key nodes of sensor data to reduce the number of data collection channels. The 
most important thing is that we will establish a three-dimensional spatio-temporal graph signal from the 
monitoring data to more clearly judge the health status of the truss bridge. 
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