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Abstract 

In semiconductor manufacturing, burn-in (BI) testing is expensive and time consuming, especially for new technologies. This 
work considers the possibility of using multimodal data collected during production for estimating the quality of the 
production process. The objective is to identify high quality lots for which the number of BI tests to be performed can be 
reduced, while keeping the early-life failure probability (ELFP) in line with user requirements. The developed method is 
based on a multibranch neural network, which receives in input signal measurements from production machines and wafer 
map images, and predicts the expected number of BI-relevant failures: if this number exceeds a preset threshold, all devices 
of the lot will be BI-tested ( -   FB lot), otherwise the number of BI-tests can be reduced ( -   
RB lot) given the high quality of the lot. The proposed method has been validated considering a synthetic dataset that 
emulates real conditions in the semiconductor industry, where some FB lots cannot be identified using only one of the two 
sources of available data. Furthermore, we test the method considering different proportions between FB and RB data to 
mimic the condition of imbalanced data expected in real production processes. The results show the superiority of the 
proposed method compared to two other methods that use only a single source of data. 
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1. Introduction 

In semiconductor manufacturing, burn-in (BI) tests are performed by exposing products to high stress 
conditions, such as high temperatures and voltages, to estimate the product early life failure probability (ELFP) 
and eliminate defective products. BI testing of semiconductor products is particularly important for their use in 
safety-critical industries, such as aerospace and automotive, which demand high reliability standards. However, 
BI tests are expensive and time consuming to perform (Suhir, 2019), particularly for new technologies, for which 
a 100% BI strategy is typically adopted (Kurz et al., 2021). Thus, efforts are being directed to safely reduce the 
number of tests to be performed on high-quality lots. In (Ahmed et al., 2023), a method based on probabilistic 
support vector regression (PSVR) is proposed to estimate the number of BI relevant failures using signals 
collected during the manufacturing process.  

In this paper, we consider the possibility of exploiting multimodal data collected from multiple sources to 
estimate the quality of the production process. Indeed, failures can be originated by defects caused by abnormal 
conditions and malfunctions occurring in different stages of the production, during which different data are 
collected. For instance, some defects related to BI-relevant failures may originate during plasma etching and be 
identified by analyzing wafer maps, others may occur while performing plasma deposition and be they are not 
detected analyzing other signals. 

In our work, we consider two sources of data collected during different stages of the production process: 1) 
process signals which contain information about the operation, and, possibly, malfunctioning of production 
machineries and 2) data from the results of tests performed on dies of wafers, which are collected in the form of 
images (typically referred to as wafer maps) and contain information about the quality of the products at a given 
stage of the production process.  
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The problem of developing data-driven methods to handle multimodal data has been addressed using a variety 
of approaches (Aria et al., 2020; Cao et al., 2021; Cho et al., 2023; Kim et al., 2021; Yang et al., 2021).  
In (Cao et al., 2021), satellite images and numerical data about climate and soil properties are used to build linear 
regression, random forest (RF) and long short-term memory network (LSTM) models for estimating rice  
crop yield. In (Aria et al., 2020), the authors use acoustic emission signals and microscopic images for estimating 
the damage size and remaining useful life (RUL) of degraded structures; the proposed method is  
based on LSTMs and Fully Convolutional DenseNets (FCDNs). In (Yang et al., 2021), images, numerical  
data and textual documents are used to develop a deep neural network for the prediction of the degradation  
level of a system of a nuclear power plant. In (Kim et al., 2021), process parameter values and time-series 
collected during the production of car windshield side molding are used to develop a multimodal neural  
network model for detecting faulty products. In (Cho et al., 2023), wafer maps and tabular data from wafer  
and package tests are used to build a multimodal neural network model for predicting the result of module  
tests at chip level. This latter work differs from our work in two ways: 1) the prediction of the quality of a single 
chip and not of a lot of chips; and 2) the prediction of the quality before module tests and not before burn-in 
tests. 

In this work, we develop a multibranch neural network. One branch uses convolutional layers to process the 
images, whereas the other branch uses fully connected layers to process the signals. The output of the model is 
the number of BI-relevant failures in the lot, from which the early life failure probability (ELFP) is computed by 
applying the Clopper-Pearson (CP) estimator (Clopper and Pearson, 1934). If the predicted ELFP is smaller than 
a preset threshold, the Reduced Burn- RB) policy. Otherwise, it will follow a Full Burn-

FB) policy. 
Simulated data that mimic the behavior of the semiconductor production process are considered to  

verify the performance of the proposed method. Specifically, since early life failures can be caused at different 
production stages, we assume that some BI-relevant failures are not detectable using only one source of data. 
The capability of the method of dealing with unbalanced datasets has also been analyzed considering two 
different scenarios with different proportions of FB lots, ranging from a balanced to a highly imbalanced 
condition. 

The remainder of this work is organized as follows. In Section 2, the problem formulation is given.  
In Section 3, the proposed method is presented. In Section 4, the case study is described and in Section 5  
the obtained results are discussed. Finally, Section 6 discusses the conclusions and final remarks on the work 
done.  

2.  Problem formulation 

A dataset  collected during semiconductor production is available, 
containing two modalities of data collected during production (  and ), the number of BI-tested devices 
of the lot ( ) and the number of BI-relevant failures in the tested devices ( ). Specifically,  is a 
vector of electrical signals measured performing electrical tests on the -th lots before BI and  is an image 
aggregating the wafer maps of the lot.  

The objective of this work is to develop a method for predicting the number of BI-relevant failures  
( ) for a lot for which the vector  of measured signals and the image  have been collected  
during production. Let  be the number of BI tests that will be performed. Once  has been predicted,  
the Clopper-Pearson (CP) estimator is used for the estimation of the ELFP of the lot, with confidence  
interval  (Clopper and Pearson, 1934). The CP estimator is the -quantile of a Beta  
distribution with parameters  and . The obtained ELFP is, then, compared  
against a predefined quality target, to determine whether the lot will need to undergo a full burn-in (FB)  
or a reduced burn-in (RB) policy. Figure 1 depicts the proposed formulation of the quality estimation  
problem. 
 
 
 
 
 
 



   

3. Proposed method 

To handle the available multimodal data, we develop a model based on a multibranch neural network. 
Specifically, the model receives in input the image of the wafer map  and the signal vector  and 
provides in output the expected number of BI-relevant failures  (Figure 2). For the branch of the model 
processing the wafer map images, convolution layers are used (Krizhevsky et al., 2012). They have been selected 
for their capability of sharing the model internal parameters and their sparse connectivity, which allow dealing 
with the large number of pixels in a single image, and their invariance to rotation and translation. In the last layer 
of this branch, the obtained feature maps are transformed into a feature vector  by using a flatten layer. With 
regard to the branch of the model processing the vector of signals , a feedforward neural network (NN) is 
used to build the feature vector . The features  and  extracted from both modalities, are, then, 
concatenated and given in input to fully connected layers for the prediction of the number of BI-relevant  
failures. 

The model is trained using the error backpropagation algorithm (Rumelhart et al., 1986), which allows 
training the whole network simultaneously, i.e. all weights of the multibranch network are updated considering 
information from both sources.  

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Problem formulation for the production lot quality estimation. 

 

Fig. 2. Multibranch NN for the prediction of the number of BI-relevant failures. 



   

3.1. Case study 

The proposed method has been validated considering a synthetic dataset which emulates production signals 
and wafer map images in semiconductor production. Each pattern , 
corresponds to a production lot, and each lot is formed by 25 wafers. The information available for each  
lot is an 8-dimensional vector  representing the production signals and a composite wafer map  
image . The vectors  are simulated using the procedure described in (Ahmed et al., 2023)  
and the images  are simulated considering the four classes of wafer maps shown in Figure 3.  
The class None  is observed for wafers in normal conditions, where defects appear randomly due to  
the stochasticity of the process, whereas the other three classes ( - - )  
are observed for defective wafers due to the occurrence of abnormal conditions in different stages  
of the semiconductor production. The procedure followed for the simulation of the wafer map images  
is taken from (Maksim et al., 2019). In practice, the larger is the number of BI-relevant failures , the  
larger is the probability -  -   
classes. 

 

 
The dataset  is formed by 2000 patterns, 1800 of which are used for training the multibranch NN  

and 200 for testing its performance. To mimic that in semiconductor production some defects are not  
detectable in one source of data, no BI-relevant failures are simulated in the signals  of 20% of the  
lots of class FB and in the wafer maps of another 20% of the lots of class FB. As a result, 60% of the FB  
lots are detectable using anyone of the two data sources, whereas the remaining 40% of the FB lots  
are not detectable using only one data source. Furthermore, we consider two different proportions of  
FB/RB data to analyze the effect of using imbalanced data to develop the multibranch NN. This is done  
because the number of RB data in real production processes is expected to be larger than the number of FB  
data.  

Figure 4 shows the two cases of balanced dataset (50% of patterns of class RB and 50% of class FB)  
and imbalanced dataset (95% of patterns of class RB and 5% of class FB). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Classes of wafer maps. 



   

4. Results and discussions 

Table 1 reports the architecture of the developed multibranch NN. The performance of the proposed  
method is compared to that of models that receive in input a single source of data. Specifically, we  
consider a feedforward ANN processing only the signals and a CNN processing only the images. 

 

Fig. 4. Distribution of the lots in classes for the balanced (upper) and imbalanced (lower) cases. 



   

Table 1. Proposed method architecture. 

Branch Parameter Value 

Signals 

Number of layers 1 
Type of layers Feedforward (F) 

Nodes per layer 64 
Activation function per layer ReLU 

Wafer Maps 

Number of layers 7 
Type of layers Convolutional (C)  Max Pooling (MP)  (C)  (MP)  (C)  (MP)  

Flatten (FL) 
Nodes per layer 128 (C)  0 (MP)  64 (C)  0 (MP)  8 (C)  0 (MP)  0 (FL) 

Activation function per layer ReLU(C)  None (MP) ReLU (C)  None (MP)  ReLU (C)  0 None 
(MP)  None (FL) 

Fully connected 
layers for the 

regression task 

Number of layers 4 
Type of layers (F) - (F) - (F) - (F) 

Nodes per layer 64  32  8  1 
Activation function per layer ReLU  ReLU  ReLU  Linear 

 
Table 2 shows the classification accuracy on RB lots, i.e. the ratio between the number of RB  

lots correctly classified and the number of tested RB lots. When the dataset becomes imbalanced  
with a small fraction of FB patterns, the accuracy on RB increases. This is because  
tuned to minimize the loss of the training data, which contain more RB patterns than FB. In this case,  
the use of a multibranch NN allows obtaining a slight improvement of the performance when compared to the 
comparison models which use a single source of data. On the contrary, the accuracy on the FB data decreases 
when the models are trained on the imbalanced dataset (Table 3). Note that when the FB data are considered,  
the proposed method outperforms the comparison methods in the balanced case and reaches the same 
performance of the ANN model in the imbalanced case, which in turn achieves better performance than the CNN 
model. 

Table 2. Classification accuracy on RB data of the multibranch deep neural network and of the two models that use a single source of data. 

Method Balanced Dataset Imbalanced Dataset 

Proposed Method   

Comparison Method 1: ANN   

Comparison Method 2: CNN   

Table 3. Classification accuracy on FB data of the multibranch deep neural network and of the two models that use a single source of data. 

Method Balanced Dataset Imbalanced Dataset 

Proposed Method   

Comparison Method 1: ANN   

Comparison Method 2: CNN   

 
Tables 4 and 5 report the performance of the models considering the data in which the defects are not 

detectable using only one source of data. In the case of the balanced dataset, the accuracy of the multibranch 
neural network is close to that of the model which uses the informative data. This result confirms that  
the multibranch NN is able to learn that the identification of some types of abnormal conditions requires  
to focus only on one source of data. On the contrary, in the case of the imbalanced dataset, the accuracy  
of the multibranch neural network remarkably decreases. This is due to the fact that too few examples of data  
in which the abnormal condition is detectable using only one source of data are available to train the  
model.  

 
 



   

Table 4. Classification accuracy on the portion of FB data in which the defect is not detectable considering the signals. 

Method Balanced Dataset Imbalanced Dataset 

Proposed Method   

Comparison Method 1: ANN   

Comparison Method 2: CNN   

Table 5. Classification accuracy on the portion of FB data in which the defect is not detectable considering the wafer maps. 

Method Balanced Dataset Imbalanced Dataset 

Proposed Method   

Comparison Method 1: ANN   

Comparison Method 2: CNN   

5. Conclusions 

A method for the prediction of the quality of semiconductor lots before BI testing is developed. The objective 
is to identify high quality lots for which it is possible to reduce burn-in testing whilst keeping high reliability 
standards. The developed method is based on a multibranch NN that receives in input multiple types of data and 
is trained to classify different types of abnormal conditions that may occur in the different phases of the 
production process. 

The results obtained in a synthetic case study representative of a semiconductor production process show that 
the proposed method is successful in incorporating information from wafer maps and process signals. 
Specifically, when one modality is not informative about the abnormal conditions causing BI-relevant failures, 
the use of the other modality allows improving the accuracy of the quality estimation. The method is also shown 
more accurate than methods that use only one source of data, especially when the training set becomes 
imbalanced with a reduction of the proportion of lots that need full BI.  

Future work will consider the development of models for further improving accuracy in case of imbalanced 
datasets, as this issue is likely to be present in real applications. This will involve the analysis of existing 
literature on imbalanced data in the context of machine learning and deep learning (Ren et al., 2023). Other 
future works are the application of the developed method to real production data collected within the iRel40 
European co-funded innovation project (https://www.irel40.eu), and the development of methods to explain the 
multibranch NN functioning.  
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