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Abstract 

This paper discusses the identification of probability distributions from samples. We propose a new method 
based on the principle of maximum entropy and more specifically maximum entropy probability density 
functions. This method requires prior knowledge or arbitrary selection of some constraint functions, and we 
identify those with neural networks. Maximum entropy formalism can then be formulated as a special layer in a 
neural network. This neural network can be trained on samples, using a custom entropy-based loss function. We 
provide examples of the estimation of non-trivial probability distributions to demonstrate the capability of our 
method. 
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1. Introduction 

Probabilistic Distributions (PD) are widely used in science and engineering; their identification remains a 
challenging task. From this, the estimation of Probability Density Functions (PDF) is way to completely 
characterize a PD. It is however not the only function describing a PD as Cumulated Distribution Functions 
(CDF) and Characteristic Functions (CF) can also serve this purpose. With the description of a PD, we can 
curate data and interpret it (e.g., with uncertainty quantification, statistical inference, etc). During the last 
decades, the acquisition of data evolved with the development, increasing availability and integration of 
computer. This evolution impacted every step of the lifecycle of data: automated acquisition instead of an 

-out, vast amounts of storage only possible with hard drives or tape recorders and easy exchange 
of data through the Internet. Overall, this means data is more accessible than ever, and it alters our relation with 
it. However, in that regard, methods of PD identification did not follow the same evolution in that time. When 
those methods were developed for small samples, noisy from their limited size, most models seemed to provide a 
fair fit. Meanwhile, large datasets suffer less from noise, while capturing more subtleties of their generating PDs. 
Hence, the usual models, often characterized only by a small number of parameters, fail to estimate the complex 
PDs by their own lack of expressiveness. Considering this, we are aiming for more versatile and expressive 
estimates, in order to match the detailed patterns offered from large samples. Therefore, we propose to employ 
neural networks, which were proven useful in a vast variety of applications, as part of our model in the 
framework of Maximum Entropy Probability Density Functions (ME-PDF). Differential entropy, described in 

(Shannon, 1948) giving birth to information theory, is a measure of the quantity of 
information of a PD. It can be interpreted as the average 
estimations of a PD, differential entropy can discriminate the best. The most parsimonious choice is keeping the 
distribution with the highest entropy, because maximizing surprise implies minimizing overconfidence. This 
yields a method to choose between models. An extent of this choice for all models of a PD is the Principle of 
Maximum Entropy (PME) defined by (Jaynes, 1957). It states the best estimation of a PD is the model that, 
under constraints from prior data, maximizes entropy. From this principle, we can derive a universal ME-PDF 
expression: 
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where  can be viewed as parameters of the model, and  as functions probing the global behaviour, 
or constraints, of the PD. In the literature, (Novi Inverardi and Tagliani, 2003) provide an example of ME-PDF 
implementation. Fractional moments probability density functions use fractional moments as constraints: 
 

. 
 

(Lin, 1992) states that an infinity of those fractional 
moments under a given value completely defines a random variable. Then, an optimization over the choice of the 
best moments, and how many are used, is applied. Finally, employing the BIC criterion avoids over-
parametrization of the model from the use of small datasets, which are prone to over-fitting. 

We also take interest in Sliced-Normal distributions from (Crespo et al., 2019), which do not explicitly use 
ME-PDF. First, their method consists in augmenting the dimensionality of a multivariate sample by calculating 
monomials of its component, projecting the problem in a higher dimensionality latent space. After that, the data 
projected in the latent space is supposed normal, and a multivariate normal distribution is fitted. An additional 
specificity is considered, as its tails are arbitrary truncated. In effect, authors only identify the mean vector and 
the covariance matrix (more exactly the Cholesky decomposition of the inverse of the covariance matrix) in the 
latent space. From there, their density only has to be re-normalised, as it no longer integrates to one from the tail 
trimming. The framework of ME-PDF is applicable for the sliced-normal distributions even though (Crespo et 
al., 2019) did not use it. In this context, the constraint could be identified as a large polynomial combining the 
monomials. The fitting is based on log-likelihood maximization which can be similar as using an entropy-based 
objective function, as shown in (Novi Inverardi and Tagliani, 2003). 

Several works in the literature discuss the identification of PD using some concepts presented above. (Di 
Paola and Pinnola, 2012) and (Dai et al., 2018) use complex fractional moments to reconstruct the CF of the PD 
with the Mellin transform. Meanwhile, (Magdon-Ismail and Atiya, 2002) use neural networks to approximate the 
CDF from the empirical distribution function. Finally, another work from (Crespo et al., 2018) fits a histogram-
shaped PDF by matching moments with maximum likelihood or minimum Kullback-Leibler divergence. 

In regard to ME-PDF framework, early works based their choice of constraints from analytical result with 
fractional moments PDF, whereas more recent works are similar to a ME-PDF approach with a polynomial 
constraint identification. We inscribe ourselves in a continuity by using neural networks for constraints 
identification in ME-PDF problems. 

2. Method formulation 

2.1. Maximum entropy probability density function 

Shannon introduced the concept of differential entropy, which is applicable to continuous distributions. 
Differential entropy is not an absolute measure of quantity of information, as it is not invariant by change of 
variable. It is however sufficient for comparison in optimization problems as long as the random variable is not 
changed. The definition of differential entropy is: 

 

 
 

where  is a continuous PDF supported on . From that definition, the following optimization problem identifies 
the ideal density maximizing entropy: 
 

 
 

 
 

  
 

 
 
 
 



   

First, the optimization is done not over a scalar or a vector but over a function (in that case ). The first 
optimization constraint (see (2)) is obvious: in order to be a PDF, the function  has to integrate to one. The 
other constraints (see (3)) are here to represent large scale properties of the distribution, and reflect the patterns 
contained in the data. Jaynes derived this method from statistical thermodynamics, where macroscopic quantities 
measured as  (e.g., temperature, pressure, etc) can reveal microscopic behaviours (e.g., the kinetic energy 
distribution of gas molecules) and reversely. ME-PDF formalism is a generalization from physics, and in the 
process constraints are loosing their interpretability. Nonetheless, a certain number of usual PD (e.g., the normal 
distribution, the exponential distribution, etc) can be formulated as ME-PDF. 

The Lagrangian associated with this optimization problem is: 
 

 

 

The extremum of the optimization problem is reached when the functional derivative of the Lagrangian 
equals zero. 

 

 

 

It can be proven this extremum is a maximum. From this, after setting , the optimal expression of 
 is given by (1). In this equation the  are parameters of the density function. However, our method 

identifies not only the , but the  as well, instead of setting them arbitrarily. The goal is to estimate the 
best constraint functions, as the information from the data is partially contained in them. 

2.2. Probability density functions defined by neural networks 

2.2.1. Introducing neural networks 
 

Neural networks (NN) are a learning model based on multiple layers of neurons, where the neurons from 
layer n ( ) are computed as  

 

, 
 

where  (respectively ) are the weights (respectively bias) and are the NN parameters, and  is a non-
linear activation function. The layers are applied successively beginning with the input vector and the last being 
the output, with all the intermediary layers we referred to as hidden layers. The activation functions are very 
usually chosen from classical results in the literature. NNs are learnt by updating through iteration the parameters 
(typically with gradient descent methods) to improve the quality of the estimation, measured by a scalar function 
(usually called loss function) comparing the estimation and the true value selected from given data. 

We use here a very classical implementation of an interpolator NN,  
 

. 
 

The input has the dimension of the data, and the output has a dimension equal to the number of constraints. 

2.2.2. Identification of the constraint functions in neural networks 
 

A NN is used for the formulation of the ME-PDF, and it is formulated as discussed below. From the vectorial 
output of the NN, each of its components can be identified as a constraint function 

 

. 
 

The set of constraint functions  is the output of the NN. Then, another special layer is applied, that we 
call the Maximum Entropy (ME) layer. The weights are given as  
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and the bias is  
 

.  
 

is however treated very differently from a classical bias in NNs, as it ensures the PDF integrates to one, and is 
analytically computed from all the other parameters (the ME layer and the NN layers). Finally, the activation 
function of the ME layer is identified as 
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The discussion above shows that (1) can be formulated in the framework of NNs, using a NN to model the 
constraint functions, and ME layer to express a ME-PDF. 

2.2.3. Formulation of the loss function 
 

Once the problem is formulated in NNs framework, we aim to find an objective function to learn all the 
parameters. A naive approach would consist of maximizing the entropy of the PDF, which would fail. The PD 
maximizing the entropy for a given domain is the uniform distribution, as it is the most parsimonious by default, 
and using the entropy to learn the parameters would ignore all the data and converge to this PD. However, Novi 
Inverardi and Tagliani (2003) proposed as an objective function the Kullback-Leibler (KL) divergence between 
the true PDF of the PD generating the data  and the estimated density  from a given model. This quantity can 
be viewed as the average added  while it is 
actually defined by . The lower the KL divergence, the 
zero value implies that both distributions are identical. 

The KL divergence can be defined as: 
 

 

 

 

 

           
 

The left-hand term of (4) is independent of the model, as it only involves on the true PD, and can be ignored 
in the optimization. The right-hand term of (4), i.e., the expected value of  (while  follows a PD 
defined by ) can not be calculated as it requires the knowledge of . However, samples of the distribution  
are available, and this term can be approximated as: 
 

 

 

The ME-PDF, i.e., (1), can be injected into (5), which yields: 
 

 

 

From this we can conclude that we can minimize  by maximizing (6) (i.e., minimizing its  
opposite). 

It is important to note that we use this divergence as a loss function and use gradient descent to update all 
parameters, excepted . We have to calculate this last one from the other parameters to ensure  integrates to 
one on . This is discussed in more details in the example section. 

3. Examples 

We use two examples to demonstrate the capability of our method, one univariate, one multivariate, and both 
are non-trivial. We limited ourselves to  data points for each example, as it is a usual sample size in the 
literature. It would be possible to use bigger dataset as the training of NNs allows to handle the data by batches, 
and to not exceed the working memory of the computer, but this remains outside the scope of this paper. 

We implement a quantification of the quality of the estimation, as the literature usually only present plots of 
estimated PDF or of the value of the optimized function. This allows objective comparison with past and future 
works. This quantity requires needing moderate computational efforts, even in high dimension. In that sense, we 
decided to use here the Maximum Mean Discrepancy (MMD) squared, which is suitable to compare PDFs, and 
can be numerically approximated (Gretton et al., 2012). It requires the choice of a kernel function, and we use 
the Gaussian RBF (with ). The use of other kernels (other classical kernels, or custom created ones 
(Shawe-Taylor and Cristianini, 2004)) or the use the Dvoretzky-Kiefer-Wolfowitz inequality (Naaman, 2021) as 
other metrics is left for future work. 



   

3.1. Univariate example 

For the first example, we try to estimate the density of the random variable  
 

, 
 

where  and  are independent random variables uniformly distributed between zero and one. (Crespo et al., 
2018) proposed this example. In the implementation of the NN, we use here a model of 3 hidden layers of 8/4/1 
neurons respectively, with ReLU activation function. With this NN, 57 parameters characterize the constraint 
function. The total number of parameters might appear high, as the frequently used PDs (normal, Weibull, 
gamma, etc) or the methods described in the literature (Novi Inverardi and Tagliani, 2003; Crespo et al., 2019) 
involves a reduced number of parameters. However, the ratio over the dataset size and dimension (1000 samples 
of univariate data) is still perfectly acceptable. The NN has only a single neuron as an output, which implies only 
one constraint function is considered in (1). It was empirically observed that this leads to satisfactory results, and 
considering additional constraints did not improve the results. 

In order to enforce the integration to one, we need to approximate the integral between the minimum and 
maximum sample values, using the rectangle quadrature rule. For univariate distributions, this approach is totally 
feasible, but the curse of dimensionality forbids us to extend it to multivariate case. 

Figure 1 shows that the results are imperfect, but are acceptable considering the complexity of the example. 
The reference PDF has a peak and is continuous, but its derivative is discontinuous at that peak. Our method 
captures relatively well that peak. Models that try to get a better fit usually require many more parameters; 
polynomials would not be able to capture such a shape. 

 

 
Fig 1. Univariate PDF estimations  

When generating multiple fits, there are some variabilities in the results as shown in Figure 2. In order to 
grasp the variability of the proposed method, Figure 2 represents 110 runs of the algorithm, each one with a 
different training sample. This variability comes partially from the regeneration of a sample at each run. With a 
new 1000 sample points for each run, we can expect some sample to be less representative of the distribution, 
which causes worse PDF identifications. The random initialization of the weights may as well have an influence. 
This last factor should not matter, as the NN is supposed to converge to the same result, but the diversity of 
curves for similar values of the loss function seems to point that the loss function is very flat when close to the 
minimum. However, all the estimated PDFs globally respect the shape of the PD, with only some difficulties on 
the spike and on the extremities. Here, for all estimations, we have . 

 



   

 

Fig. 2. Bundle of 110 PDF estimations. 

Further works intend to study the repeatability, i.e., with a fixed learning sample and different neural  
networks parameters initialization, and the reproducibility, i.e., with a different sample and neural networks 
parameters initialization. 

3.2. Multivariate example 

The second example involves two random variables with a complex joint PDF. (Colbert et al., 2020) proposed 
a similar example. The NN is here six layers deep with respectively 40/30/20/10/5/1 neurons, activated by the 

lem, the 
 instead of , and we could have expected the need to square the number of 

parameters to get satisfying results. The number of parameters is significantly lower than that, which seems to 
indicate that the method is able to scale to higher number of dimensions without an explosion of the number of 
parameters. The integration here is slightly more complex: we defined the bounding box of the samples, to then 

timate the integral by Quasi Monte Carlo. 
 

 

Fig. 3. True multivariate PDF value and one estimated PDF. 



   

In Figure 3, the true PDF is on the left, and the estimated PDF is on the right. Figure 3 presents the difference 
between the true PDF and the estimated PDF. This result is satisfying as our model captures the global complex 
shape of this PDF, with however imperfections highlighted by Figure 4. When repeating this method, the 
estimated density always satisfies . 

 

 
Fig 4. Difference between the true and an estimated PDF. 

4. Conclusions and future work 

We propose a new method based on ME-PDFs, which combines this statistical framework with NNs. This 
paper empirically shows that it is possible to use NNs to estimate PDFs. We believe that such PDF estimations 
would inherently benefit from the strengths of NNs: ability to handle large scale datasets, good extrapolation 
behaviour, etc. 

Multiple parameters of the problem can be further investigated: the sample size, the dimension of the data, 
the selection of the activation functions, the use of regularization, the architecture of the NN (i.e., the number of 
layers and neurons per layer), or even the type of NN used. This is left for future work. 

However, there remain multiple limitations and questions to address. The evaluation of the integration 
constant (  involved in (1)) is more and more difficult as the dimension increases. Some efficient integration 
methods, like importance sampling or Markov Chain Monte Carlo (Llorente et al., 2023) might be necessary to 
push the method further. Some questions arise as well on the identification of the domain. We use here an 
interval closely framing all the sample but, neglecting any physical limitation, we can not know the bounds of 
the PD. The PD can even be unbounded. The method has to be adapted to account for the unknown nature of the 
bounds. In a related manner, some methods usually reject some samples by considering them as 
some criterion. Similar thoughts could be of interest for us, but the concept of outliers clashes with the principle 
of maximum entropy. Moreover, ME-PDFs can be defined with multiple constraint functions, but we empirically 
observed that a unique constraint function is sufficient and the introduction of additional constraints does not 
improve the fit. Some time could also be dedicated on investigating the separation of the information in the 
multiple constraints to improve the expressiveness of the network. Furthermore, an extensive amount of work is 
left to measure the quality of the estimated PDFs, to guarantee the relevance of our method. It will come first 
with a great care in the metrics used, and their ability to reflect an objective quantitative measure of the density 
estimation. Finally, the robustness of the method will be investigated, with either some mathematical bounds on 
the error given by an estimation, or by some numerical benchmarks testing the repeatability and reproducibility 
of the method. 
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