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Abstract 

In efforts to advance the development of clean energy sources, wind turbines have become increasingly popular for their 
ability to passively convert wind energy into electricity. Turbines require routine maintenance to remain operational, as there 
are many constantly moving components that degrade over time. To forecast when maintenance may be needed, turbine 
engineers use machine learning techniques such as time-series forecasting to predict the remaining useful life of the turbine. 
However, Quantum Machine Learning (QML), a rapidly developing field exploring quantum physics based hardware for 
running machine learning algorithms, is heavily unexplored in turbine prognostics and health management (PHM). This 
paper proposes a QML-based Generative Adversarial Network (GAN) specifically for forecasting vibrations within the shaft 
of a wind turbine. Our results show that compared to a classical GAN model, the Quantum GAN (Q-GAN) provides 
comparable performance and increased trainability, indicating a promising future for the development and application of 
QML in turbine PHM. 
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1. Introduction 

The increasing global demand for clean energy sources has led to the proliferation of clean energy sources 
over the course of the last century. One promising avenue for clean energy is the development of wind turbines 
to generate electricity. Turbines generate electricity by converting the kinetic energy of wind into mechanical 
energy through the rotation of blades, which then drives a generator to produce electrical power through 
electromagnetic induction. However, wind turbines are heavily dependent upon routine maintenance due to the 
inherent wear and tear of their constantly moving components leading to degradation. To combat this problem, 
reliability engineers can employ machine learning techniques, such as time-series forecasting, to forecast the 
level of degradation a particular turbine will experience in the future. This allows us to understand at exactly 
what point the turbine will reach a certain threshold for critical damage, and then let us to schedule proactive 
maintenance to repair degrading parts right when they begin to significantly affect the performance of the 
machine. While classical machine learning techniques have been proven to be effective for this purpose, 
Quantum Machine Learning (QML) remains almost completely unexplored in PHM despite its promising utility 
in the field. 

Indeed, QML is a growing research topic as of late due to its potential in increasing program run times, 
optimization tasks, and machine learning model accuracy. While research on the applications of QML in various 
fields such as finance and chemistry are being thoroughly explored, applied research towards wind turbine PHM 
is almost non-existent. This paper aims to change that by putting forward a Quantum Machine Learning-based 
Generative Adversarial Network (Q-GAN) and utilizing it for the forecasting of harmful vibrations within the 
shaft of a wind turbine, which can then be used to determine when maintenance will be needed. Generative 
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Adversarial Network (GAN) models are known for their ability to produce synthetic data by using a Generator 
model within the GAN that tries to replicate observed trends in input data while a Discriminator model helps the 
Generator improve its performance. Currently, GANs are mainly used for tasks such as image generation. 
However, it can also be used for generating data matching the trends of input data such that we can theoretically 
use GANs for time-series forecasting tasks by inputting previous measurements of data and then getting an 
output of what the GAN believes future measurements of data will look like. GANs themselves have been used 
in time-series tasks (Wang et al., 2020) using GANs for short-term predictions of wind power output. While the 
results from (Wang et al., 2020) are reasonable, we theorize that the performance of GANs for these wind 
turbine PHM tasks can be improved with the use of a QML model as the generator inside a GAN instead of a 
classical generator, which would ultimately end up in powerful quantum models for turbine prognostics. 

The paper is divided as follows. Section 2 presents an overview of the machine learning methods currently 
used in PHM. Section 3 introduces Quantum Computing and Machine Learning, while section 4 provides the 
construction and architecture of the proposed Quantum GAN. The processing of the turbine data is provided in 
Section 5, whereas Section 6 provides discussion on the results of the Q-GAN compared to a classical GAN for 
vibration prognostics. Section 7 offers some concluding remarks and directions for future work to build off the 
work of this paper. 

2. Machine learning in prognostics and health management today 

At the core of ML-based prognostics lies the utilization of vast datasets generated by sensors embedded in 
wind turbines. These sensors capture critical parameters such as rotor speed, temperature, vibration, and other 
operational metrics. ML algorithms, particularly supervised learning models, leverage historical data to discern 
patterns and anomalies, enabling the creation of predictive models for identifying potential issues. In (Wang et 
al., 2020), a semi-supervised GAN was used to extract non-linear and dynamic patterns from the wind energy 
data to perform prediction of wind power in the future. Another example would be the use of Variational 
Autoencoders to perform compression over large files of ball-bearing fault data (San Martin et al., 2018), which 
can greatly reduce the time-complexity involved with classification tasks of the ball bearing elements, as there is 
simply less data for the model to look over.  A final use case would be the usage of a LSTM-CNN model for to 
predict the energy output of turbines in an off-shore wind farm based on historical data and information of the 
turbines (Chen et al., 2021). These examples provide a basis for the implementation of machine learning models 
in prognostics and health management. 

3. A brief introduction to quantum computing and machine learning 

Quantum computing is an emerging field which promises to revolutionise how we solve complex problems. 
Unlike classical computers, which rely on bits that can only exist in one of two states, quantum computers use 
quantum bits, or qubits, which are represented as probabilities of being a 0 or 1 - it is not definite. This is an 
example of quantum superposition, and with other properties such as quantum entanglement between qubits, 
qubits become powerful as computational devices. These properties can be exploited to perform certain 
calculations much faster than classical computers, making them particularly useful for tasks such as machine 
learning. The python library used in this paper to run quantum machine learning algorithms is Pennylane 
(Bergholm, Izaac and Schuld, 2022).  

Machine learning (ML) models are algorithms which learn from data without being explicitly programmed. It 
involves training models to identify patterns in data and make predictions or classifications based on those 
patterns. Training a ML model consists of three main stages: data preparation, model training, and model 
evaluation. During the data preparation stage, data is collected, cleaned, and relevant features are extracted or 
engineered for the model to be trained on. In the model training stage, machine learning algorithms are used to 
train models on the prepared data. Finally, in the model evaluation stage, the trained models are tested on new 
data to ensure their accuracy and effectiveness. If the model currently is not performing to the level of accuracy 
which you would expect on given data, we go back to the training stage and keep repeating the process until the 
model works properly. 



   

4. Quantum-GAN architecture 

This paper proposes a Quantum GAN (Q-GAN), which is a hybrid machine learning model that combines 
quantum and classical computing. The generator for the Q-GAN is a Quantum Long Short-Term Memory circuit 
(QLSTM) (Chen, Yoo and Fang, 2020). The QLSTM replaces a layer in a classical LSTM circuit with 6 
Variational Quantum Circuits (VQCs) to form a QLSTM cell. VQCs are a type of quantum circuit used in 
quantum machine learning and optimization, which are parameterized by a set of randomly initialised parameters 
and optimised to minimise a cost function related to the task objective. VQCs have the advantage of being able 
to represent complex functions using a small number of qubits and gates, thus theoretically providing 
computational advantages over classical machine learning algorithms. This QLSTM generator uses 4 qubits from 
the Pennylane's default.qubit Quantum Computer simulator. As shown later, the new quantum layer in the 
proposed model was found to have quicker convergence and a more stable loss function graph than its classical 
counterpart. To recap the differences, the information flows from which data is processed between LSTMs and 
QLSTMs is shown below.  

The information flow in an LSTM is as following: 
 

 

 

 

 

 

 

 

 

          

 

 

 
where denotes the sigmoid functions, , are classical neural networks ( ), where represents 
the forget block, represents the input block, represents a new state cell candidate, and  represents the output 
block. 

The architecture of the LSTM can be visualised with the following image. 
 

 

Fig.1. Classical LSTM architecture. 

 
 
 
 
 
 
 
 



   

While this model works well for time-series, we attempt to further improve its performance with the use of 
Variational Quantum Circuits within the information flow. The information flow in a Quantum LSTM can be 
modelled as: 
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where the term VQC denotes various Variational Quantum Circuits that will be used in the hybrid Quantum 
LSTM. Note that the set of equations are alike between the classical LSTM and the Quantum LSTM. However, 
the main difference, and proposed advantage, comes from the usage of the VQCs in the Quantum LSTM. The 
architecture of the QLSTM can be visualised with the following image. 
 

 
Fig. 2. Quantum LSTM architecture. 

Each VQC box is integrated in the architecture as detailed in Figure 4. The  and  blocks represent the 
sigmoid and the hyperbolic tangent activation function, respectively;  is the input at time ,  is for the hidden 
state, is for the cell state, and  is the output;  and  represents element-wise multiplication and addition, 
respectively. 

 
 
 
 
 
 
 
 
 



   

5. Processing Turbine Data 

The dataset is collected from a 2MW wind turbine with high-speed shaft driven by a 20-tooth pinion gear.  
A vibration signal of 6 seconds was acquired each day for 50 consecutive days (there are 2 measurements  
on March 17, which are treated as two days in this example). An inner race fault developed and  
caused the failure of the bearing across the 50-day period (The MathWorks Inc., 2024). The dataset can be found 
at the link: https://github.com/mathworks/WindTurbineHighSpeedBearingPrognosis-Data. We start by 
converting the file types to pandas dataframes for easy data manipulation, allowing us to down sample the 
dataframe in favour of time-efficiency as well as engineering statistical features from the vibration data to help 
understand patterns from the data. The dataset now contains 29,198 x 10 data points. Naturally, this volume 
leads to high training times as well as the curse of dimensionality (Keogh and Mueen, 2017). To address both 
these issues, we train and use an Autoencoder consisting of fully connected linear layers. The encoder (E) 
transforms the n x m dataset X into a lower-dimensional latent space representation: 

.  

The decoder (D) then reconstructs the original dataset from the latent space representation: 

.  

The loss function used to measure accuracy is the Mean Squared error between the real values inputted into the 
autoencoder and the reconstructed value outputted from the decoder. During training, the Mean Squared Error 
loss is minimized between the original data X and the reconstructed data :  

,  

where i ranges from 1 to n, and j ranges from 1 to m. The goal is to train the autoencoder to learn a 
representation of the original data in the lower-dimensional latent space (n x 1). This solves both the problems of 
high training times and the curse of dimensionality. We now have a n x m datas
manageable n x 1 latent space representation to train the GAN. The GAN will forecast the latent space, the 
forecasted latent space can then be reconstructed with the decoder of the autoencoder, which then leads to the 
forecasts of the vibration to be used for turbine health evaluation. 

6. Results 

With our data processed, we are now ready to train the GANs and Q-GANs. To standardise both the models 
as much as possible, we will use Bayesian optimization (Snoek, 2012) to select the most optimal 
hyperparameters (generator and discriminator learning rates, batch size, epoch count, and betas values) for each 
model. After training, we will compare the results of both the models for forecasting. Metrics used for evaluation 
will be forecast RMSE compared to training values, real values, epochs taken to converge, total model 
parameters, and time taken to run. Results are in the table below. 

Table 1. Results. 

Model Classical GAN Quantum GAN 

Training RMSE 5.689 6.950 
Testing RMSE 9.933 10.436 
Epochs taken to converge 48 19 
Total Model Parameters (Gen. + Disc.) 8186113+ 109429 169+109429 
Time taken to run ~0.46 hours ~12.79 hours 

 
We have also included images of the forecasts versus the real values in the testing and training datasets for 

each model to help visualise the accuracy the models. 
 



   

 
Fig. 3. Classical GAN prediction on the training dataset. 

 
Fig. 4. Quantum GAN prediction on the training dataset. 



   

 
Fig. 5. Classical GAN prediction on the testing dataset. 

 
Fig. 6. Quantum GAN prediction on the testing dataset. 



   

7. Conclusions and future research 

Based on the above results, the proposed Quantum GAN was able to provide a comparable performance when 
compared to the classical GAN. Note also that the Quantum GAN was able to converge much quicker than the 
classical GAN, with much fewer total parameters as well. In fact, near the end of the graphs for Figures 3 and 4, 
the Quantum GAN was able to catch onto a large spike in the vibrations, whereas this behaviour was missed by 
the classical GAN. Being able to catch transients indicative of faults, which translates to abnormal events where 
a component has severely broken instantly, is what one needs to detect and model to be able to develop efficient 
and reliable maintenance strategies. Regarding the trainability of the models, the usage of the Variational 
Quantum Circuits as trainable models enabled the Quantum GAN to essentially "train more in one epoch than 
the Classical GAN does in one epoch". It is also important to note that there are significantly less parameters in 
the Quantum GAN, which can be attributed to only needing to tune qubit angles within the Quantum LSTM, as 
compared to a greater variety of tuneable parameters in the classical GANs layers. Finally, because of using a 
simulator (a classical computer coded to behave like a quantum computer) and not a real quantum computer, it 
will take you more time to train quantum models unless one uses a real quantum computer. While classical 
epochs could be trained in under 20 seconds, epochs for quantum epochs took around 10 minutes each. Possible 
room for improvement would be to try out different Quantum Computing simulators from different providers, or 
in the future evaluate performance on a real quantum computer. As hardware scales with time, so will algorithms 
making Quantum Machine Learning models, such as the proposed Quantum GAN, far more effective and pave 
the way for algorithms that are not constructed from existing classical machine learning algorithms and are 
instead unique with no classical counterparts. Overall, the Quantum GAN has shown itself to be a competitive 
counterpart to classical GAN in terms of performance and further shows the future of Quantum Machine 
Learning as a viable alternative to Classical Machine Learning for prognostics and health management tasks. 
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