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Abstract 

Many dynamical systems are subjected to stochastic influences, such as random excitations, noise and unmodeled behavior. 
 and parameters based on a physical model is a common task for which usually filtering 

algorithms, e.g. Kalman filters and their non-linear extensions, are used. Many of these filters however use assumptions on 
the transition probabilities or the covariance model which can lead to inaccuracies in non-linear systems. We will show here 
the application of a stochastic coupling filter that is able to approximate arbitrary transition densities under non-Gaussian 
noise. The filter is based on so-called transport maps which couple the approximation densities to a user-chosen reference 
density and thus allow for straight-forward sampling and evaluation of probabilities. 
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1. Introduction 

Dynamical systems are at the heart of many engineering disciplines. Knowledge about the system's internal 
parameters is important in these to ensure safe operation conditions, to predict future behavior or to gain insight 
on the system's condition, i.e. for damage detection and health monitoring. This knowledge is obtained or 
updated through measurements from some system components, however, in many cases it is not possible to 
directly measure the system's state. Moreover, the measurements are polluted by inherent sensor noise which 
needs to be filtered out. In the past, many algorithms have been developed towards this goal. The most 
prominent is the Kalman filter, which, due to its optimality in linear systems subjected to Gaussian noise, still is 
rightfully used in many applications. For non-linear systems there have been many endeavors towards extending 
the Kalman filter's capacity, however, these often rely on the Gaussian noise assumption as an underlying 
uncertainty model. In the context of health and systems monitoring, Kalman filters and their derivatives are often 
used to track parameter changes over time or to extract knowledge about damage states from noisy 
measurements. In a more general sense this is also known as sequential updating (Vanik et al., 2000). As an 
example, (Ghanem and Ferro, 2006) used an ensemble Kalman filter (EnKF) to estimate damage in a four-story 
shear building by tracking the changes in system parameters over time. (Erazo et al., 2018) showed the 
application of Kalman filters to structural health monitoring using a decoupling between environmental changes 
and parameter changes. (Xie and Feng, 2011) applied an unscented Kalman filter (UKF) to non-linear structural 
identification. Similarly, (Lei et al., 2019) proposed an UKF to identify non-linear systems under unknown 
inputs and (Diaz et al., 2023) used an UKF and error estimation techniques to update a structure subjected to 
vibrations from a shaking table. 

Sequential updating offers the possibility to also track a system's changes in real-time. Here the effort lies in 
fast and efficient sampling methods such that the data can be assimilated as soon as it is measured. Towards this 
goal, (Chatzi and Smyth, 2012) introduced mutation in particle filter applications to tackle the issue of the 
samples collapsing to only few states. Particle filters were also proposed for fault detection and isolation because 
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of their performance in highly non-linear settings by (Orchard and Vachtsevanos, 2009). (Lye et. al, 2023) 
proposed the sequential ensemble Monte Carlo sampler, which increases robustness and efficiency of sampling 
from complicated probability distributions.  

We will show here a stochastic coupling filter that can be used as a replacement for general sequential 
updating settings where the goal is to estimate states and parameters under noisy measurements. The filter has no 
underlying assumption on the model or noise uncertainty. The rest of the paper is structured as follows: In 
section 2 we will introduce the general transport map formulation and the underlying theory. Section 3 
introduces the filter methodology for state estimation with section 4 expanding it to joint state-parameter 
estimation. Section 5 shows the application to a Duffing oscillator and section 6 concludes this paper. 

2. Transport maps 

A transport map is an invertible deterministic coupling between two probability density functions (PDFs), one 
being the target density of interest  and the other one a user-chosen reference density . This coupling allows 
for the direct sampling and calculations of integrals on the target PDF since calculations can be performed 
through change of variables (Spantini et al., 2018) 

 

   (1)  
 

where  is the transport map that transforms samples from the target density to the reference 
density. The reference density is usually chosen as standard normal or standard uniform, since this choice makes 
calculations straight forward once the map is found (Spantini et al., 2018). With the push-forward operator 
 

 (2)  
 

and the pull-back operator for the inverted map  
 

 (3)  
 

a distance for the approximation  can be calculated with the Kullback-Leibler divergence 
 

 (4)  

or, due to invertibility of the map, 
 

 (5)  

The distance can thus either be defined in terms of the reference or the target density. Both options are viable, 
depending on the use case. If a function for the target density is known, i.e. in Bayesian model updating, where 
the goal is to approximate the posterior density, the expression in (4) can be used. If only samples from the 
posterior are known, which is the setting of this paper, the expression in (5) is more useful. Multiple 
formulations have been proposed for the maps , i.e. polynomials (Marzouk et al., 2016), tensor trains (Dolgov 
et al., 2020) or neural networks (Ardizzone et al., 2019). In this context, the latter are also referred to as 
normalizing flows (Kobyzev et al., 2020). For uniqueness and ease of computation purposes, as well as to fulfil 
the invertibility criterion, the maps are constructed in a lower-triangular fashion, also known as Knothe-
Rosenblatt rearrangement 
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where each component  pushes forward the first  components of . Moreover, each component is 
constructed as 
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with parameterized functions  and a rectifier function , e.g. the exponential function, that 
ensures monotonicity in the last argument. For computations we used the MParT framework (MParT 
Development Team, 2023). The functions  are defined as linear combinations of Hermite 
polynomials  
 

 (8) 

 

with 
 

 

 

The subscript  denotes a vector of so-called multi-indices which define the order of the Hermite 
polynomials. For a more in-depth explanation and derivations the interested reader is referred to (Baptista, 2023) 
and the references therein. 

In order to find the map parameters , (2) and (5) are written as 
 

 (9) 

 

A smaller distance indicates a better fit between the approximation and the target PDF. If a number of  
samples  from the target distance are available, (9) can be transformed into a minimization procedure 
 

 (10) 

 

If  is chosen as standard normal density, the formulation of (9) is equivalent to normalizing the samples  
through the (non-linear) mapping to be distributed according to the standard normal density. The polynomial 
degree of  in (8) can be changed in order to change the approximation quality, where higher order maps are 
able to better approximate the target, however, this naturally also increases the computational effort, as the size 
of  increases. (10) can be solved by any optimization algorithm, especially those that use gradient information 
have proven to be effective here. The gradient of (10) is readily available, since all of the expressions are 
formulated analytically. 

3. Coupling Filter for state estimation 

As a first step we will summarize here the general approach and the formulation for state estimation of a 
dynamical system to motivate the application to combined state-parameter estimation. This approach was 
introduced by (Spantini et al., 2022), where more in-depth derivations and proofs can be found. Consider the 
state-space system with  states and  measurements at some time  
 

 
  (11) 

 

where  are the states (e.g. positions, velocities...) and their derivatives in time,  is the state 
transition matrix,  is the input matrix,  are inputs to the system,  are measurements, 

 is the measurement matrix and  is additive random noise that corrupts the measurements, i.e. 
, where  is the PDF of . Gaussian noise is often used here. The subscript  indicates the discrete 

timestep at time . Since entries of the state  are only indirectly observable through measurements the goal is 
to update the   at time  based on the information obtained through measurements  
up until this point. In most cases, the measurements are also incomplete, i.e. .  Given some samples 

 at time  distributed according to the (assumed known) PDF , samples from the prior 
distribution at time step  can be obtained by propagating  forward in time with integration 
of (11). By constructing a joint probability for measurements and states  and letting the reference PDF  be 
the standard normal density, a map  can be defined using the push-forward operation 
from (2) as 



   

. (12)  
 

The map  has the structure 
 

 (13)  

 

Each component  in (13) pushes forward the first  inputs to a marginal distribution of the reference 
density. Therefore, by definition of the standard normal density, the components are independent and can be 
computed in parallel. Moreover, since we are only interested in an expression for , the first  components can 
be ignored, giving the final form of  

 

 (14)  

where each component is a function . 
Samples from  can be obtained by sampling  from the noise distribution  after obtaining prior 

samples . Each simulated state  is thereby augmented by a simulated measurement  to obtain pairs 
. Note that the posterior is obtained from defining the pairs  where   

is the actual measurement at time  and  are the unknown samples from the posterior density 
. By definition, these pairs can be pushed to  by (12), therefore  can be obtained  

after finding the map  by first pushing the pairs  to the standard normal density, then setting  
 and inverting the map, i.e. 

 

 (15)  
 

where the inverse map  is defined by finding the input  to  such that 
 

 (16)  
 

for the known inputs . Because of the components' independence, finding the inverse of the map 
is equivalent to finding the  roots of each scalar function in , this can again be done in parallel. The 
obtained samples  from (15) can then be used to update the states for the next time steps in a recursive 
manner. 

An illustration for the filtering process between two time steps is shown in Fig. 1. The blue samples represent 
the propagated states from time  to time , i.e. they are sampled according to . Red samples 
indicate the likelihood samples that were drawn from . Together, these represent samples 
(magenta) from the joint PDF  (indicated as contour plot), which can be approximated by the transport map 
formulation to an arbitrary degree. After obtaining this approximation it can be used to condition the joint PDF 
on a measurement  by simply inverting the map, thus reaching the desired posterior PDF   
(red line in Fig. 1). 

The advantage of using transport maps to approximate the joint density is that there is virtually no assumption 
on the structure of the involved probability functions, especially on . As long as the map parameterization is 
rich enough to describe the involved densities, neither the state transition nor the noise needs to follow Gaussian 
or linear assumptions, as is the case with many other filtering algorithms. 

 
 



  

 
Fig. 1. Illustration of the filtering process from time  to time  through the joint PDF . 

4. Joint state-parameter estimation using the coupling filter 

Many dynamical systems are dependent on some parameters that define their behavior in time. Let  
be a vector of parameters for the system described in (11), then it can be rewritten as 

 

 
  (17)  

 

where the system's matrices are now dependent on . If  is unknown and subject to identification, the state 
vector  can be augmented by simply adding  as entries in , i.e. 

 

 . (18)  
 

Estimating both states and parameters together follows the same procedure as described in the previous 
chapter, however the orders of magnitude in each dimension of  can vary drastically which makes solving the 
optimization procedure in (10) inefficient. We therefore introduce an additional regularization step before 
building the map , which decreases the computational effort without adding too much complexity. Since the 
standard normal density is used as a reference, the prior pairs  and  can 
be normalized to a zero-mean distribution with unit covariance by shifting and scaling the samples with 

 

  
  

(19)  

 

where  and  denote the normalized samples,  is the inverse lower-triangular Cholesky factor of the 
covariance matrix of the prior samples and  is the mean of the prior samples. Note that the pair  
contains the simulated measurements, while the pair  contains the actual measurements. Both are 
normalized using the same mean and covariance. The resulting normalized samples more closely resemble the 
target distribution which decreases the needed effort to find the map, since the distance to the target is smaller. 
Moreover, the transformation in (19) is linear and easily available, because it only involves calculating the mean 
and covariance of the prior samples. The objective now is to find normalized posterior samples , which can 
be transformed back to the non-normalized posterior pairs  by  

 

  (20)  
 

where  is the output of the map inversion from (15). Since  and  the first  
normalized measurements from  are used in the back-transformation in (20). The full procedure to estimate 
states and parameters is summarized below: 
 



   

 at time  propagate  to  through the (non-linear) system [equation (17)] 
 sample pairs  from   
 normalize obtained samples to obtain  and  [equation (19)] 
 build and optimize  [equation (14) and (10)] 
 calculate inverted map output fixed on the measurements [equation (15)] 
 calculate non-normalized posterior samples  [equation (19)] 

4.1. Likelihood oversampling 

In order to enhance the efficiency of the filter we propose to oversample the likelihood, i.e. draw more than 
one sample per propagated state. This increases the information content in the approximation of the joint 
distribution   and makes it more robust, since the maps are able to better approximate the joint PDF. While 
drawing samples from the likelihood is computationally inexpensive, this slightly increases the time it takes to 
compute the transport maps since more samples need to be evaluated. This is however favorable over simulating 
more system states since this would require more evaluations of the system's equations, which usually is more 
time-consuming. 

5. Numerical example 

In order to show the applicability of the coupling filter to non-linear state-parameter estimation, we will show 
the procedure here on a Duffing oscillator. The equation of motion is 

 

  (21)  
 

with scalar states  that denote acceleration, velocity and position, linear stiffness , linear damping  and 
non-linear stiffness . In this example we use a forced Duffing oscillator with force amplitude  and frequency 

. (21) can be written in state-space 
 

 
(22)  

 

with measurements 
 

 (23)  
 

For estimation of the parameters,  is augmented as  and , i.e. only the 
position is measured directly. The noise  is chosen to follow a zero-mean Laplace distribution, since this 
exhibits much longer tails than a Gaussian distribution. The equation for the Laplace distribution (omitting the 
mean value) is 

 

 (24)  

 

with . We use here and  for the system parameters to be identified, as well 
as  and  for the input parameters. To show the effect of likelihood oversampling we calculated 
results for a single and three likelihood samples per state. As initial conditions we set the position and velocity to 
zero and set the initial guesses for the parameters to be twice the value of the actual parameters to verify that the 
filter is able to deal with non-optimal initialization. Further, we use a sample size of 20 systems, with the 
oversampling described as above this leads to 20 and 60 samples to approximate , respectively. We simulate 
the system in  with time step size . An example for the system behavior and the histogram 
of the noise is shown in  
Fig. 2. The figure shows the system displacement (black line) from  to  and the measurements (red 
dots) on the left. The right diagram shows the relative occurrence of noise values over the full simulated time. 

 



  

 
 

Fig. 2. Example for system behavior and noise 
 

Results of the identification are shown in Fig. 3 and Fig. 4, where the top two graphs show the results for 
position  and velocity  and the bottom row shows the estimations for the three parameters  and . True 
values are given as a blue line, all graphs show the estimated posterior PDFs in time shaded in white. In the case 
without oversampling (Fig. 3) it can be observed that the state and velocity are estimated quite well, although 
with greater variance than if oversampling is used (Fig. 4). Especially the uncertainty in the non-linear stiffness 
parameter  is very large and it deviates quite far from the true value around . A similar situation can be 
observed for the linear stiffness . The damping  is estimated with less variance. The estimations for  and  
also deviate from the true state, however they do not become unstable, which could be a concern in this example 
since the system behaves slightly chaotic. 

 

 
Fig. 3. Results for no oversampling for updating of Duffing-oscillator, figures show the PDF of the states and parameters. 

 



   

 
Fig. 4. Results for an oversampling factor of 3 for updating of Duffing-oscillator, figures show the PDF of the states and parameters. 
 
Oversampling the likelihood with three samples per propagated state (Fig. 4) overall results in less variance in 

the estimations. Position and velocity closely follow the true values and the three parameters converge to the 
prescribed values. From this example it is evident that an oversampling of the likelihood provides more 
information about  without drastically increasing the computational burden. To illustrate this further, Fig. 5 
shows the computation time for the maps at each time step, with the no oversampling case in red and the 
oversampling in black. Note that these times do not include the time for the state propagation from step  to step 

. Since we used 20 samples from the system in both cases the time to propagate the system is identical. It 
can be seen that, on average, the time for the oversampled maps are longer than the times for maps without 
oversampling. The overall computation times, including model propagation, were 36.55 s without oversampling 
and 39.60 s with oversampling. Also note that the computation time in each time step roughly stays the same, 
which is an important criterion for real-time state-parameter estimation.  

 

 
Fig. 5. Map computation time at each time step for oversampling factors of 1 (red) and 3 (black). 

 
The difference between the two cases depends on multiple factors like the map dimensionality, map order, the 

oversampling factor or the topology of . Increasing the map dimensionality, i.e. increasing the number of 
estimated states and parameters, or increasing the map order increase the map complexity and therefore the 
optimization time. If oversampling is used, the maps need to be evaluated more often. The longer computation 
times in the maps themselves then lead to a larger difference in the evaluation times when the likelihood is 
oversampled. The same argument is true for the oversampling factor, i.e. more samples from the likelihood lead 
to more computation time, as we showed in the example in this paper. Generally, a balance should be found 
between the number of simulated system states  and the number of samples from the likelihood . Fig. 1 
gives some intuition for this process. In this two-dimensional example a larger number of samples  directly 
correspond to a larger number of samples from  (if one likelihood sample per propagated state is drawn, i.e. 



  

no "undersampling" is performed) which adds information about the uncertainty of parameters and measurement 
noise at the same time. On the other hand, if the likelihood is oversampled, only information about the noise is 
added. Oversampling thus increases the robustness against measurement noise to some extent but should also not 
be exaggerated. At some point there is little gain from increasing the number of samples from the likelihood, 
however, this would still increase the computation time. 

6. Conclusion and outlook 

In this contribution a coupling filter for joint state-parameter estimation for non-linear dynamical systems 
based on transport maps was introduced and evaluated. The filter works by approximating the joint density of 
states and measurements with so-called transport maps, which give an analytic formulation of the density. This 
analytic formulation can then be used to condition the joint PDF at any assimilation time step on a measurement, 
giving an approximation for the posterior density. In the used transport map framework this operation is done by 
simply inverting polynomial expressions which make the process very efficient. Moreover, since there are no 
assumptions on the noise distributions or the model, non-Gaussian and non-linear settings can be treated in a 
straight-forward manner. The presented filter performed well for the state and parameter estimation of a Duffing 
oscillator with non-optimal initial conditions under non-Gaussian noise. We also evaluated likelihood 
oversampling, which can help to increase the available information about the measurement noise and make the 
filter more robust against it. We found that oversampling the likelihood function decreases the overall variance 
in the estimations. 
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